#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

FATIGUE FAILURE OF NICKEL-TITANIUM INSTRUMENTS IN ENDODONTICS AND ITS INFLUENCING FACTORS


Authors: A. Jusku 1;  T. Dodeková 1;  J. Staněk 1;  B. Özel 2;  P. Jirásek 1;  V. Polanská 1;  Ľ. Harvan 1
Authors‘ workplace: Klinika zubního lékařství, Lékařská fakulta Univerzity Palackého a Fakultní nemocnice, Olomouc 1;  Yeditepe University, Faculty of Dentistry, Department of Endodontics, Istanbul, Turkey 2
Published in: Česká stomatologie / Praktické zubní lékařství, ročník 122, 2022, 2, s. 51-58
Category: Review Article
doi: https://doi.org/10.51479/cspzl.2022.005

Overview

Introduction and aim: The fracture of Ni-Ti instruments is a complication that most dentists will sooner or later encounter in the dental office. There are mainly two basic mechanisms behind it and these are exceeding the cyclic fatigue limit, exceeding the torsional fatigue limit and their mutual combination. The purpose of this article is to describe the fracture mechanism of a nickel-titanium endodontic instrument based on cyclic fatigue, the influencing factors and related issues of laboratory testing.

Methods: Literature searches were performed using PubMed (MEDLINE), ScienceDirect and the Wiley Online Library database. Keywords related to the topic were used to search the literature. Then suitable sources were selected.

Instrument fracture mechanism: A cyclic fatigue fracture consists of three basic phases. Initiation, which is the period of time when morphological changes occur, especially on the surface and subsurface of the instrument, until the formation of the primary crack. After that the crack gradually grows with the formation of characteristic striations. As soon as the fracture toughness limit is exceeded, it is time for final failure and separation of part of the instrument.

Factors affecting fracture: One of the most significant effects on fracture formation has the quality of the alloy. Today, rotary endodontic instruments can be divided according to their structure into the instruments with a predominance of martensite or austenite. From the point of view of cyclic fatigue, martensitic instruments are significantly more durable than austenitic. From a physical point of view, surface roughness has a direct effect on fracture formation as surface irregularities serve as predisposing points for stress concentration. The shape of the instrument also has an important effect, as the smaller diameter of the instrument and its core has a positive effect on the resistance to cyclic fatigue. As the cross-section area of the instrument increases, the tensile strain on its surface increases, thus, a faster failure occurs.

The ambient temperature significantly affects the properties of the instruments. Higher temperature reduces resistance to cyclic fatigue. It should be kept in mind that the instrument may behave diametrically differently at room temperature compared to the root canal temperature. We must also not forget the parameters of the root canal, which fundamentally affect the failure of the instrument. The type of instrument movement kinematics in the root canal is also very important. From this point of view, we can clearly say that the rotational mode reduces the instruments's resistence to cyclic fatigue compared to reciprocal ones. An ideal irrigant has not yet been identified for cyclic fatigue testing.

Conclusion: The topic of failure of endodontic instruments based on cyclic fatigue is very extensive. Its development and understanding can help the production of more durable instruments and thus minimize the presence of this complication in a general dental office.

Keywords:

cyclic fatigue – fracture of NiTi instruments in endodontics – fracture mechanism.


Sources

1. McGuigan MB, Louca C, Duncan HF. Endodontic instrument fracture: causes and prevention. Br Dent J. 2013; 214(7): 341–348.

2. Pillay M, Vorster M, van der Vyver PJ. Fracture of endodontic instruments – Part 1: Literature review on factors that influence instrument breakage. S Afr Dent J. 2020; 75(10): 553–563.

3. Gambarini G. Advantages and disadvantages of new torque–controlled endodontic motors and low–torque NiTi rotary instrumentation. Aust Endod J. 2001; 27(3): 99–104.

4. Bouska J, Justman B, Williamson A, DeLong C, Qian F. Resistance to cyclic fatigue failure of a new endodontic rotary file. J Endod. 2012; 38(5): 667–669.

5. Zupanc J, Vahdat–Pajouh N, Schäfer E. New thermomechanically treated NiTi alloys – a review. Int Endod J. 2018; 51(10): 1088–1103.

6. Liu D, Pons DJ. Crack propagation mechanisms for creep fatigue: a consolidated explanation of fundamental behaviours from initiation to failure. Metals. 2018; 8(8): 623.

7. Wang ZQ, Beyerlein IJ, LeSar R. Slip band formation and mobile dislocation density generation in high rate deformation of single fcc crystals. Philos Mag. 2008; 88(9): 1321–1343.

8. Sangid MD. The physics of fatigue crack initiation. Int J Fatigue. 2013; 57: 58–72.

9. Cheung GSP, Darvell BW. Fatigue testing of a NiTi rotary instrument. Part 2: fractographic analysis. Int Endod J. 2007; 40(8): 619–625.

10. Jusku A, Tomáštík J, Václavek L, Jirásek P, Harvan Ľ, Holík P, Čtvrtlík R. Physical properties of modern reciprocal endodontic systems and fatigue failure testing in simulated clinical conditions. Appl Sci. 2021; 11(23): 11160.

11. Thompson SA. An overview of nickel-titanium alloys used in dentistry. Int Endod J. 2000; 33(4): 297–310.

12. Pedullà E, Lo Savio F, Boninelli S, Plotino G, Grande NM, La Rosa G, Rapisarda E. Torsional and cyclic fatigue resistance of a new nickel-titanium instrument manufactured by electrical discharge machining. J Endod. 2016; 42(1): 156–159.

13. Plotino G, Grande NM, Mercadé Bellido M, Testarelli L, Gambarini G. Influence of temperature on cyclic fatigue resistance of ProTaper Gold and ProTaper Universal rotary files. J Endod. 2017; 43(2): 200–202.

14. Plotino G, Grande NM, Cotti E, Testarelli L, Gambarini G. Blue treatment enhances cyclic fatigue resistance of vortex nickel-titanium rotary files. J Endod. 2014; 40(9): 1451–1453.

15. Hieawy A, Haapasalo M, Zhou H, Wang ZJ, Shen Y. Phase transformation behavior and resistance to bending and cyclic fatigue of ProTaper Gold and ProTaper Universal instruments. J Endod. 2015; 41(7): 1134–1138.

16. Jusku A, Jirásek P, Petřivalská A, Rosa M, Staněk J, Harvan Ľ. Unicone PLUS vs. Unicone – in vitro studie cyklické únavy při různých teplotách okolního prostředí. Čes stomatol Prakt zubní lék. 2020; 120(3): 88–93.

17. Shen Y, Coil JM, Zhou H, Zheng Y, Haapasalo M. HyFlex nickel–titanium rotary instruments after clinical use: metallurgical properties. Int Endod J. 2013; 46(8): 720–729.

18. Shen Y, Zhou HM, Zheng YF, Peng B, Haapasalo M. Current challenges and concepts of the thermomechanical treatment of nickeltitanium instruments. J Endod. 2013; 39(2): 163–172.

19. Lopes HP, Elias CN, Vieira MVB, Vieira VTL, de Souza LC, dos Santos AL. Influence of surface roughness on the fatigue life of nickel-titanium rotary endodontic instruments. J Endod. 2016; 42(6): 965–968.

20. Anderson ME, Price JWH, Parashos P. Fracture resistance of electropolished rotary nickel–titanium endodontic instruments. J Endod. 2007; 33(10): 1212–1216.

21. Condorelli GG, Bonaccorso A, Smecca E, Schäfer E, Cantatore G, Tripi TR. Improvement of the fatigue resistance of NiTi endodontic files by surface and bulk modifications. Int Endod J. 2010; 43(10): 866–873.

22. Bui TB, Mitchell JC, Baumgartner JC. Effect of electropolishing ProFile nickeltitanium rotary instruments on cyclic fatigue resistance, torsional resistance, and cutting efficiency. J Endod. 2008; 34(2): 190–193.

23. Kuhn G, Tavernier B, Jordan L. Influence of structure on nickel-titanium endodontic instruments failure. J Endod. 2001; 27(8): 516–520.

24. Gavini G, Pessoa OF, Barletta FB, Vasconcellos MAZ, Caldeira CL. Cyclic fatigue resistance of rotary nickeltitanium instruments submitted to nitrogen ion implantation. J Endod. 2010; 36(7): 1183–1186.

25. Bumbalek M, Joska Z, Pokorny Z, Sedlak J, Majerik J, Neumann V, Klima K. Cyclic fatigue of dental NiTi instruments after plasma nitriding. Materials. 2021; 14(9): 2155.

26. Lee DH, Park B, Saxena A, Serene TP. Enhanced surface hardness by boron implantation in nitinol alloy. J Endod. 1996; 22(10): 543–546.

27. Wolle CFB, Vasconcellos MAZ, Hinrichs R, Becker AN, Barletta FB. The effect of argon and nitrogen ion implantation on nickel-titanium rotary instruments. J Endod. 2009; 35(11): 1558–1562.

28. Bahia MGA, Buono VTL. Decrease in the fatigue resistance of nickeltitanium rotary instruments after clinical use in curved root canals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005; 100(2): 249–255.

29. Di Nardo D, Gambarini G, Seracchiani M, Mazzoni A, Zanza A, Del Giudice A, D'Angelo M, Testarelli L. Influence of different cross-section on cyclic fatigue resistance of two nickel–titanium rotary instruments with same heat treatment: an in vitro study. Saudi Endod J. 2020; 10(3): 221–225.

30. Staffoli S, Grande NM, Plotino G, Özyürek T, Gündoğar M, Fortunato L, Polimeni A. Influence of environmental temperature, heat-treatment and design on the cyclic fatigue resistance of three generations of a single-file nickel–titanium rotary instrument. Odontology. 2019; 107(3): 301–307.

31. Pruett JP, Clement DJ, Carnes DL. Cyclic fatigue testing of nickel-titanium endodontic instruments. J Endod. 1997; 23(2): 77–85.

32. Yılmaz K, Özyürek T. Cyclic fatigue life of Tango-Endo, WaveOne GOLD, and reciproc NiTi instruments. Restor Dent Endod. 2017; 42(2): 134–139.

33. Plotino G, Grande NM, Testarelli L, Gambarini G, Castagnola R, Rossetti A, Özyürek T, Cordaro M, Fortunato L. Cyclic fatigue of Reciproc and Reciproc Blue nickel-titanium reciprocating files at different environmental temperatures. J Endod. 2018; 44(10): 1549–1552.

34. Keleş A, Eymirli A, Uyanık O, Nagas E. Influence of static and dynamic cyclic fatigue tests on the lifespan of four reciprocating systems at different temperatures. Int Endod J. 2019; 52(6): 880–886.

35. Keskin C, Inan U, Demiral M, Keleş A. Cyclic fatigue resistance of Reciproc Blue, Reciproc, and WaveOne Gold reciprocating instruments. J Endod. 2017; 43(8): 1360–1363.

36. Hartmann RC, Fensterseifer M, Peters OA, De Figueiredo JAP, Gomes MS, Rossi–Fedele G. Methods for measurement of root canal curvature: a systematic and critical review. Int Endod J. 2019; 52(2): 169–180.

37. Oh S, Kum KY, Kim HJ, Moon SY, Kim HC, Chaniotis A, Perinpanayagam H, Pedullá E, Chang SW. Bending resistance and cyclic fatigue resistance of WaveOne Gold, Reciproc Blue, and HyFlex EDM instruments. J Dent Sci. 2020; 15(4): 472–478.

38. Fangli T, Maki K, Kimura S, Nishijo M, Tokita D, Ebihara A, Okiji T. Assessment of mechanical properties of WaveOne Gold Primary reciprocating instruments. Dent Mater J. 2019; 38(3): 490–495.

39. Plotino G, Grande NM, Melo MC, Bahia MG, Testarelli L, Gambarini G. Cyclic fatigue of NiTi rotary instruments in a simulated apical abrupt curvature. Int Endod J. 2010; 43(3): 226–230.

40. Plotino G, Grande NM, Mazza C, Petrovic R, Testarelli L, Gambarini G. Influence of size and taper of artificial canals on the trajectory of NiTi rotary instruments in cyclic fatigue studies. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010; 109(1): 60–66.

41. Grande NM, Plotino G, Falanga A, Somma F. A new device for cyclic fatigue testing of NiTi rotary endodontic instruments: R60. Int Endod J. 2005; 38(12): 936–937.

42. Plotino G, Grande NM, Sorci E, Malagnino VA, Somma F. A comparison of cyclic fatigue between used and new Mtwo Ni–Ti rotary instruments. Int Endod J. 2006; 39(9): 716–723.

43. Plotino G, Ahmed HMA, Grande NM, Cohen S, Bukiet F. Current assessment of reciprocation in endodontic preparation: a comprehensive review – part II: properties and effectiveness. J Endod. 2015; 41(12): 1939–1950.

44. Pedullà E, Grande NM, Plotino G, Gambarini G, Rapisarda E. Influence of continuous or reciprocating motion on cyclic fatigue resistance of 4 different nickel-titanium rotary instruments. J Endod. 2013; 39(2): 258–261.

45. De-Deus G, Moreira EJL, Lopes HP, Elias CN. Extended cyclic fatigue life of F2 ProTaper instruments used in reciprocating movement. Int Endod J. 2010; 43(12): 1063–1068.

46. Özyürek T. Cyclic fatigue resistance of Reciproc, WaveOne, and WaveOne Gold nickel-titanium instruments. J Endod. 2016; 42(10): 1536–1539.

47. Alfawaz H, Alqedairi A, Alsharekh H, Almuzaini E, Alzahrani S, Jamleh A. Effects of sodium hypochlorite concentration and temperature on the cyclic fatigue resistance of heat-treated nickel-titanium rotary instruments. J Endod. 2018; 44(10): 1563–1566.

48. Grande NM, Plotino G, Silla E, Pedullà E, DeDeus G, Gambarini G, Somma F. Environmental temperature drastically affects flexural fatigue resistance of nickel-titanium rotary files. J Endod. 2017; 43(7): 1157–1160.

49. Yılmaz K, Uslu G, Gündoğar M, Özyürek T, Grande NM, Plotino G. Cyclic fatigue resistances of several nickel–titanium glide path rotary and reciprocating instruments at body temperature. Int Endod J. 2018; 51(8): 924–930.

50. Plotino G, Testarelli L, Al-Sudani D, Pongione G, Grande NM, Gambarini G. Fatigue resistance of rotary instruments manufactured using different nickel-titanium alloys: a comparative study. Odontology. 2014; 102(1): 31–35.

51. Plotino G, Grande NM, Testarelli L, Gambarini G. Cyclic fatigue of Reciproc and WaveOne reciprocating instruments. Int Endod J. 2012; 45(7): 614–618.

52. de Hemptinne F, Slaus G, Vandendael M, Jacquet W, De Moor RJ, Bottenberg P. In vivo intracanal temperature evolution during endodontic treatment after the injection of room temperature or preheated sodium hypochlorite. J Endod. 2015; 41(7): 1112–1115.

53. Elnaghy AM, Elsaka SE. Effect of sodium hypochlorite and saline on cyclic fatigue resistance of WaveOne Gold and Reciproc reciprocating instruments. Int Endod J. 2017; 50(10): 991–998.

54. Shen Y, Huang X, Wang Z, Wei X, Haapasalo M. Low environmental temperature influences the fatigue resistance of nickel-titanium files. J Endod. 2018; 44(4): 626–629.

55. Keles A, Uzunoglu Ozyurek E, Uyanik MO, Nagas E. Effect of temperature of sodium hypochlorite on cyclic fatigue resistance of heat-treated reciprocating files. J Endod. 2019; 45(2): 205–208.

56. Topçuoğlu HS, Topçuoğlu G, Akti A, Düzgün S. In vitro comparison of cyclic fatigue resistance of ProTaper Next, HyFlex CM, OneShape, and ProTaper Universal instruments in a canal with a double curvature. J Endod. 2016; 42(6): 969–971.

57. AlShwaimi E. Cyclic fatigue resistance of a novel rotary file manufactured using controlled memory Ni–Ti technology compared to a file made from M-wire file. Int Endod J. 2018; 51(1): 112–117.

58. Tokita D, Ebihara A, Miyara K, Okiji T. Dynamic torsional and cyclic fracture behavior of ProFile rotary instruments at continuous or reciprocating rotation as visualized with high-speed digital video imaging. J Endod. 2017; 43(8): 1337–1342.

59. De-Deus G, Leal Vieira VT, Nogueira da Silva EJ, Lopes H, Elias CN, Moreira EJ. Bending resistance and dynamic and static cyclic fatigue life of Reciproc and WaveOne large instruments. J Endod. 2014; 40(4): 575–579.

60. Ertuğrul İF. Effect of sodium hypochlorite on the cyclic fatigue resistance: A scanning electron microscopy evaluation. Microsc Res Tech. 2019; 82(12): 2089–2094.

61. Uslu G, Özyürek T, Yılmaz K, Plotino G. Effect of dynamic immersion in sodium hypochlorite and EDTA solutions on cyclic fatigue resistance of WaveOne and WaveOne Gold reciprocating nickel-titanium files. J Endod. 2018; 44(5): 834–837.

62. Pedullà E, Benites A, La Rosa GM, Plotino G, Grande NM, Rapisarda E, Generali L. Cyclic fatigue resistance of heat-treated nickel-titanium instruments after immersion in sodium hypochlorite and/or sterilization. J Endod. 2018; 44(4): 648–653.

Labels
Maxillofacial surgery Orthodontics Dental medicine

Article was published in

Czech Dental Journal

Issue 2

2022 Issue 2
Popular this week
Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#