#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Electrophilicity in the context of oral homeostasis and the theory of hormesis: biochemical view


Authors: J. Vacek 1;  P. Beneš 2,3;  A. Jusku 2,3;  Z. Dostál 1;  M. Zatloukalová 1;  P. Jirásek 2,3*
Authors place of work: Korespondující autor *;  Ústav lékařské chemie a biochemie, Lékařská fakulta Univerzity Palackého v Olomouci 1;  Klinika zubního lékařství, Lékařská fakulta Univerzity Palackého v Olomouci 2;  Klinika zubního lékařství, Fakultní nemocnice Olomouc 3
Published in the journal: Česká stomatologie / Praktické zubní lékařství, ročník 124, 2024, 3, s. 69-74
Category: Review Article
doi: https://doi.org/10.51479/cspzl.2024.002

Summary

Introduction: The oral cavity is a complex system in which mutual chemical communication occurs between tissues, microbiota, and components of saliva and food. This paper focuses on hormetic effects and electrophilic compounds, which can play a role in defense mechanisms against oxidative stress and inflammatory processes. Hormetic effects, induced by sublethal or subtoxic stressors, can activate repair mechanisms and enhance tissue resistance to damage.

Methods: The analysis was conducted through searches in three electronic databases: Web of Science, PubMed, and Scopus. Our research focused on studies published between 2000 and 2023 that dealt with redox processes, inflammatory conditions, and activation of the Nrf2 pathway in the oral cavity. Studies focused on cancerous diseases were excluded.

Conclusion: Electrophilic compounds act as one of the agents that interfere with the homeostasis of the oral cavity, and can thus find therapeutic potential in dentistry, specifically in periodontology. However, findings based on in vitro and preclinical studies require further verification under clinical conditions, and also considering interactions with oral microbiota.

Keywords:

hormesis, Nrf2 pathway, nitro-fatty acids, oral cavity homeostasis


Zdroje
  1. Davies KJ. Adaptive homeostasis. Mol Aspects Med. 2016; 49: 1–7. Available from: https://doi.org/10.1016/j.mam.2016.04.007
  2. Buzalaf MA, Hannas AR, Kato MT. Saliva and dental erosion. J Appl Oral Sci. 2012; 20(5): 493–502. Available from: https://doi. org/10.1590/s1678-77572012000500001
  3. Fukuto JM, Carrington SJ, Tantillo DJ, Harrison JG, Ignarro LJ, Freeman BA, et al. Small molecule signaling agents: the integrated chemistry and biochemistry of nitrogen oxides, oxides of carbon, dioxygen, hydrogen sulfide, and their derived species. Chem Res Toxicol. 2012; 25(4): 769–793. Available from: https://doi.org/10.1021/ tx2005234
  4. Bernard C. An introduction to the study of experimental medicine 1865 originally published in 1865; first English translation by Henry Copley Greene, published by Macmillan & Co, Ltd 1927; Dover edition. 1957.
  5. Cannon WB. The wisdom of the body. New York: W W Norton & Company; 177–201 1932.
  6. Selye H. The stress of life. New York: McGraw-Hill Book Company. 1956.
  7. Southam CM, Ehrlich J. Effects of extract of western red-cedar heartwood on certain wood-decaying fungi in culture. Phytopathology. 1943; 33: 517–524.
  8. Calabrese EJ. Hormesis: a revolution in toxicology, risk assessment and medicine. EMBO Rep. 2004; 5 Spec No(Suppl 1): S37–40. Available from: https://doi.org/10.1038/sj.embor.7400222
  9. Calabrese EJ, Baldwin LA. Toxicology rethinks its central belief. Nature. 2003; 421(6924): 691–692. Available from: https://doi.org/10.1038/421691a
  10. Vacek J, Zatloukalova M, Kabelac M. Redox biology and electrochemistry. Towards evaluation of bioactive electron donors and acceptors. Curr Opin Electrochem. 2022; 36: 101142. Available from: https://doi. org/10.1016/j.coelec.2022.101142
  11. Kosmachevskaya OV, Topunov AF. Nonenzymatic reactions in metabolism: Their role in evolution and adaptation. Appl Biochem Microbiol. 2021; 57(5): 543–555. Available from: https://doi.org/10.1134/ S0003683821050100
  12. Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, Mann GE, et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol. 2022; 23(7): 499–515. Available from: https://doi.org/10.1038/ s41580-022-00456-z
  13. Hayyan M, Hashim MA, Alnashef IM. Superoxide ion: generation and chemical implications. Chem Rev. 2016; 116(5): 3029–3085. Available from: https://doi.org/10.1021/acs.chemrev.5b00407
  14. Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 2014; 39(4): 199–218. Available from: https://doi.org/10.1016/j.tibs.2014.02.002
  15. Calabrese EJ, Kozumbo WJ. The hormetic dose-response mechanism: Nrf2 activation. Pharmacol Res. 2021; 167: 105526. Available from: https://doi.org/10.1016/j. phrs.2021.105526
  16. Schopfer FJ, Khoo NKH. Nitro-fatty acid logistics: formation, biodistribution, signaling, and pharmacology. Trends Endocrinol Metab. 2019; 30(8): 505–519. Available from: https://doi. org/10.1016/j.tem.2019.04.009
  17. Choi EY, Lee JE, Lee AR, Choi IS, Kim SJ. Nitrooleic acid inhibits macrophage activation induced by lipopolysaccharide from Prevotella intermedia. Nut Res. 2022; 106: 35–46. Available from: https://doi.org/10.1016/j. nutres.2022.07.009
  18. Lee JE, Lee AR, Choi EY, Choi IS, Kim SJ. Effect of nitro-conjugated linoleic acid on the inflammatory response of murine macrophages activated with lipopolysaccharide derived from Prevotella intermedia. Inflammopharmacology. 2024; 32(1): 561–573. Available from: https://doi. org/10.1007/s10787-023-01340-8
  19. Mangla B, Javed S, Sultan MH, Kumar P, Kohli K, Najmi A, et al. Sulforaphane: A review of its therapeutic potentials, advances in its nanodelivery, recent patents, and clinical trials. Phytother Res. 2021; 35(10): 5440–5458. Available from: https://doi.org/10.1002/ ptr.7176
  20. Dias IH, Chapple IL, Milward M, Grant MM, Hill E, Brown J, et al. Sulforaphane restores cellular glutathione levels and reduces chronic periodontitis neutrophil hyperactivity in vitro. PLoS One. 2013; 8(6): e66407. Available from: https://doi.org/10.1371/ journal.pone.0066407
  21. Kim KN, Kim JY, Cha JY, Choi SH, Kim J, Cho SW, et al. Antifibrotic effects of sulforaphane treatment on gingival elasticity reduces orthodontic relapse after rotational tooth movement in beagle dogs. Korean J Orthod. 2020; 50(6): 391–400. Available from: https://doi.org/10.4041/kjod.2020.50.6.391
  22. Chin YT, Tu HP, Lin CY, Kuo PJ, Chiu HC, Liu SH, et al. Antioxidants protect against gingival overgrowth induced by cyclosporine A. J Periodontal Res. 2021; 56(2): 397-407. Available from: https://doi.org/10.1111/jre.12832
  23. Saidu NEB, Kavian N, Leroy K, Jacob C, Nicco C, Batteux F, et al. Dimethyl fumarate, a two-edged drug: Current status and future directions. Med Res Rev. 2019; 39(5): 1923–1952. Available from: https://doi.org/10.1002/med.21567
  24. Yamaguchi Y, Kanzaki H, Katsumata Y, Itohiya K, Fukaya S, Miyamoto Y, et al. Dimethyl fumarate inhibits osteoclasts via attenuation of reactive oxygen species signalling by augmented antioxidation. J Cell Mol Med. 2018; 22(2): 1138–1147. Available from: https://doi.org/10.1111/jcmm.13367
  25. Gu F, Wu H, Huang Z, Wang F, Yang R, Bian Z, et al. The effects of dimethyl fumarate on cytoplasmic LPS-induced noncanonical pyroptosis in periodontal ligament fibroblasts and dental pulp cells. Int Endod J. 2023; 56(7): 869–880. Available from: https://doi. org/10.1111/iej.13926
  26. Guenova E, Hoetzenecker W. Treatment of recurrent aphthous stomatitis with fumaric acid esters. Arch Dermatol. 2011; 147(3): 282–284. Available from: https://doi.org/10.1001/archdermatol.2011.27
  27. Piesche M, Roos J, Kühn B, Fettel J, Hellmuth N, Brat C, et al. The emerging therapeutic potential of nitro fatty acids and other Michael acceptorcontaining drugs for the treatment of inflammation and cancer. Front Pharmacol. 2020; 11: 1297. Available from: https://doi.org/10.3389/fphar.2020.01297
  28. Calabrese EJ. Human periodontal ligament stem cells and hormesis: Enhancing cell renewal and cell differentiation. Pharmacol Res. 2021; 173: 105914. Available from: https://doi.org/10.1016/j.phrs.2021.105914
  29. Carreno M, Pires MF, Woodcock SR, Brzoska T, Ghosh S, Salvatore SR, et al. Immunomodulatory actions of a kynureninederived endogenous electrophile. Sci Adv. 2022; 8(26). Available from: https://doi.org/10.1126/sciadv.abm9138
Štítky
Maxillofacial surgery Orthodontics Dental medicine
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#