#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Active cellular immunotherapy of ovarian cancer using dendritic cells


Authors: Tomáš Brtnický 1 ;  M. Podrazil 2;  J. Bartůňková 2;  R. Špíšek 2;  Lukáš Rob 1
Authors place of work: Gynekologicko-porodnická klinika 2. LF UK a FN Motol, Praha, přednosta prof. MUDr. L. Rob, CSc. 1;  Ústav imunologie 2. lékařské fakulty UK a FN Motol, Praha, přednostka prof. MUDr. J. Bartůňková, DrSc. 2
Published in the journal: Ceska Gynekol 2012; 77(3): 215-220

Summary

Objective:
Overview and comparison of current results of studies dealing with the development and application of anti-cancer vaccines based on dendritic cells in ovarian cancer.

Design:
Review.

Setting:
Department of Obstetrics and Gynaecology Charles University, Prague, 2nd Faculty of Medicine and University Hospital Motol, Department of Immunology 2nd Faculty of Medicine and University Hospital Motol.

Summary:
Ovarian carcinoma (OVCA) is highly sensitive to chemotherapy; however despite this results from treatment are fairly unsatisfactory. Bearing this in mind, it is important to look for new ways to better understand the immunological mechanisms which could affect reactivation of the disease. It is likely that new knowledge in the field of the immunology of ovarian carcinoma could improve monitoring of the disease and help to ameliorate prognosis of the disease. One strategy in development is creation of anti-OVCA vaccines. Theese vaccines are made by the fusion of dendritic cell (DC) and tumor cells or its parts (NA, peptides). DC are bone-marrow derived leukocytes that are critical in the initiation of T cell mediated immunity. DC are fused to patient-derived ovarian carcinoma cells. The fusion cells induces cytotoxic T cell against autologous OVCA cells.

Key words:
dendritic cells, anti-tumor vaccines, antitumor immunity, biological therapy, ovarian cancer.


Zdroje

1. Adema, GJ., de Vries, IJ., Punt, CJ., Figdor, CG. Migration of dendritic cell based cancer vaccines: in vivo veritas? Curr Opin Immunol, 2005, 17, p. 170–174.

2. Banchereau, J., Briere, F., Caux, C., et al. Immunobiology of dendritic cells. An Rev Immunol, 2000, 18, p. 767–811.

3. Banchereau, J., Steinman, RM. Dendritic cells and the control of immunity. Nature, 1998, 392, p. 245–252.

4. Barrou, B., Benoit, G., Ouldkaci, M., et al. Vaccination of prostatectomized prostate cancer patients in biochemical relapse, with autologous dendritic cells pulsed with recombinant human PSA. Cancer Immunol Immunother, 2004, 53, p. 453–460.

5. Bonifaz, L., Bonnyay, D., Mahnke, K., et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med, 2002, 196, p. 1627–1638.

6. Boullart, AC., Aarntzen, EH., Verdijk, P., et al. Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration. Cancer Immunol Immunother, 2008, 57, p. 1589–1597.

7. Brossart, P., Wirths, S., Stuhler, G., et al. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood, 2000, 96, p. 3102–3108.

8. Burgdorf, SK., Fischer, A., Claesson, MH., et al. Vaccination with melanoma lysate-pulsed dendritic cells, of patients with advanced colorectal carcinoma: report from a phase I study. J Exp Clin Cancer Res, 2006, 25, p. 201–206.

9. Curti, A., Tosi, P., Comoli, P., et al. Phase I/II clinical trial of sequential subcutaneous and intravenous delivery of dendritic cell vaccination for refractory multiple myeloma using patient-specific tumour idiotype protein or idiotype (VDJ)-derived class I-restricted peptides. Br J Haematol, 2007, 139, p. 415–424.

10. Davis, ID., Jefford, M., Parente, P., Cebon, J. Rational approaches to human cancer immunotherapy. J Leukoc Biol, 2003, 73, p. 3–29.

11. De Vries, IJ., Krooshoop, DJ., Scharenborg, NM., et al. Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res, 2003, 63, p. 12–17.

12. Dubsky, P., Hayden, H., Sachet, M., et al. Allogeneic tumor lysate can serve as both antigen source and protein supplementation for dendritic cell culture. Cancer Immunol Immunother, 2008, 57, p. 859–870.

13. Fujii, S., Shimizu, K., Hemmi, H., Steinman, RM. Innate Valpha14(+) natural killer T cells mature dendritic cells, leading to strong adaptive immunity. Immunol Rev, 2007, 220, p. 183–198.

14. Gong, J., et al. Fusion of Human Ovarian Carcinoma Cells with Autologous of Allogenic Dendritic Cells Induce Antitumor Immunity, 2000, 165, p. 1705–1711.

15. Heiser, A., Dahm, P., Yancey, DR., et al. Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro. J Immunol, 2000, 164, p. 5508–5514.

16. Hernando, JJ., et al. Vaccination with autologous tumor antigen-pulsed dendritic cells in advanced gynaecological malignancies: clinical and immunological evaluation of a phase I trial. Cancer Immunol Immunother, 2002, 51, p. 45–52.

17. Hernando, JJ., et al. Vaccination with dendritic cells transfected with mRNA-encoded folate-receptor-α for relapsed metastatic ovarian cancer, Lancet Oncol, 2007, 8, p. 451–454.

18. Homma, S., et al. Cancer immunotherapy using dendritic/tumor-fusion vaccine induces elevation of serum anti-nuclear antibody with better clinical responses. Clin Exp Immunol, 2006, 144, p. 41–47.

19. Inaba, K., Turley, S., Iyoda, T., et al. The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J Exp Med, 2000, 191, p. 927–936.

20. Inaba, K., Young, JW., Steinman, RM. Direct activation of CD8+ cytotoxic T lymphocytes by dendritic cells. J Exp Med, 1987, 166, p. 182–194.

21. Koido, S., et al. Assessment of fusion cells from patient-derived ovarian carcinoma cells and dendritic cells as a vaccine for clinical use. Gynecol Oncol, 2005, 99, p. 462–471.

22. Kugler, A., Stuhler, G., Walden, P., et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat Med, 2000, 6, p. 332–336.

23. Liu, YJ. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell, 2001, 106, p. 259–262.

24. Lu, W., Arraes, LC., Ferreira, WT., Andrieu, JM. Therapeutic dendritic-cell vaccine for chronic HIV-1 infection. Nat Med, 2004, 10, p. 1359–1365.

25. Matzinger, P. An innate sense of danger. Semin Immunol, 1998, 10, p. 399–415.

26. Matzinger, P. Tolerance, danger, and the extended family. Ann Rev Immunol, 1994, 12, p. 991–1045.

27. Medzhitov, R., Preston-Hurlburt, P., Janeway, CA, Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 1997, 388, p. 394–397.

28. Mellman, I., Steinman, RM. Dendritic cells: specialized and regulated antigen processing machines. Cell, 2001, 106, p. 255–258.

29. Murphy, GP., Tjoa, BA., Simmons, SJ., et al. Infusion of dendritic cells pulsed with HLA-A2-specific prostate-specific membrane antigen peptides: a phase II prostate cancer vaccine trial involving patients with hormone-refractory metastatic disease. Prostate, 1999, 38, p. 73–78.

30. Murphy, GP., Tjoa, BA., Simmons, SJ., et al. Phase II prostate cancer vaccine trial: report of a study involving 37 patients with disease recurrence following primary treatment. Prostate, 1999, 39, p. 54–59.

31. Nestle, FO., Alijagic, S., Gilliet, M., et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med, 1998, 4, p. 328–332.

32. Niess, JH., Brand, S., Gu, X., et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science, 2005, 307, p. 254–258

33. Nouri-Shirazi, M., Banchereau, J., Bell, D., et al. Dendritic cells capture killed tumor cells and present their antigens to elicit tumor-specif/ic immune responses. J Immunol, 2000, 165, p. 3797–3803.

34. Palmer, DH., Midgley, RS., Mirza, N., et al. A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology, 2009, 49, p. 124–132.

35. Romani, N., Reider, D., Heuer, M., et al. Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J Immunol Methods, 1996, 196, p. 137–151.

36. Rozkova, D., Tiserova, H., Fucikova, J., et al. FOCUS on FOCIS: combined chemo-immunotherapy for the treatment of hormone-refractory metastatic prostate cancer. Clin Immunol, 2009, 131, p. 1–10.

37. Schlienger, K., et at. TRANCE - and CD40 ligand-matured Dendritic Cells Reveal MHC Class I-restricted T Cells Specific for Autologous Tumor in Late-Stage Ovarian Cancer Patients. Clin Cancer Res, 2002, 9, p. 1517–1527.

38. Schuler-Thurner, B., Dieckmann, D., Keikavoussi, P., et al. Mage-3 and influenza-matrix peptide-specific cytotoxic T cells are inducible in terminal stage HLA-A2.1+ melanoma patients by mature monocyte-derived dendritic cells. J Immunol, 2000, 165, p. 3492–3496.

39. Spisek, R., Chevallier, P., Morineau, N., et al. Induction of leukemia-specific cytotoxic response by cross-presentation of late-apoptotic leukemic blasts by autologous dendritic cells of nonleukemic origin. Cancer Res, 2002, 62, p. 2861–2868.

40. Steinman, RM., Cohn, ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med, 1973, 137, p. 1142–1162.

41. Tarbell, KV., Yamazaki, S., Olson, K., et al. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J Exp Med, 2004, 199, p. 1467–1477.

42. Tarbell, KV., Yamazaki, S., Steinman, RM. The interactions of dendritic cells with antigen-specific, regulatory T cells that suppress autoimmunity. Semin Immunol, 2006, 18, p. 93–102.

43. Thurner, B., Haendle, I., Roder, C., et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med, 1999, 190, p. 1669–1678.

44. Tjoa, BA., Simmons, SJ., Bowes, VA., et al. Evaluation of phase I/II clinical trials in prostate cancer with dendritic cells and PSMA peptides. Prostate, 1998, 36, p. 39–44.

45. Tjoa, BA., Simmons, SJ., Elgamal, A., et al. Follow-up evaluation of a phase II prostate cancer vaccine trial. Prostate, 1999, 40, p. 125–129.

46. Tobiasova, Z., Pospisilova, D., Miller, AM., et al. In vitro assessment of dendritic cells pulsed with apoptotic tumor cells as a vaccine for ovarian cancer patients. Clin Immunol, 2007, 122, p. 18–27.

47. Verdijk, P., Aarntzen, EH., Lesterhuis, WJ., et al. Limited amounts of dendritic cells migrate into the T-cell area of lymph nodes but have high immune activating potential in melanoma patients. Clin Cancer Res, 2009, 15, p. 2531–2540.

48. Verdijk, P., Aarntzen, EH., Punt, CJ., et al. Maximizing dendritic cell migration in cancer immunotherapy. Expert Opin Biol Ther, 2008, 8, p. 865–874.

49. Young, JW., Steinman, RM. Dendritic cells stimulate primary human cytolytic lymphocyte responses in the absence of CD4+ helper T cells. J Exp Med, 1990, 171, p. 1315–1332.

50. Yu, JS., Wheeler, CJ., Zeltzer, PM., et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res, 2001, 61, p. 842–847.

Štítky
Paediatric gynaecology Gynaecology and obstetrics Reproduction medicine

Článok vyšiel v časopise

Czech Gynaecology

Číslo 3

2012 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#