Determination of prealbumin and selenium in serum for monitoring the nutrition status of phenylketonuric and hyperphenylalaninemic patients
Authors:
D. Procházková 1; L. Kolbová 1; J. Jarkovský 2
; H. Vinohradská 3; P. Konečná 1; Z. Doležel 1
Authors place of work:
Pediatrická klinika, Lékařská fakulta Masarykovy univerzity Brno a Fakultní nemocnice Brno, přednosta prof. MUDr. Z. Doležel, CSc.
1; Institut biostatistiky a analýz, Lékařská a Přírodovědecká fakulta Masarykovy univerzity, Brno, vedoucí doc. RNDr. L. Dušek, Dr.
2; Oddělení klinické biochemie, Fakultní nemocnice Brno, prim. doc. MUDr. M. Dastych, CSc., MBA
3
Published in the journal:
Čes-slov Pediat 2012; 67 (3): 170-177.
Category:
Original Papers
Summary
Objectives:
Phenylketonuria is an inherited disorder of metabolism of the amino acid phenylalanine caused by a deficit of the enzyme phenylalaninhydroxylase. It is treated with a low-protein diet containing a low content of phenylalanine to prevent mental affection of the patient. It is a highly restrictive therapeutic diet using a mixture of amino acids without phenylalanine (AAM) in combination with low-protein products and low amount of natural proteins. The objective of the present study was to assess the compliance of our phenylketonuric (PKU) and hyperphenylalaninemic (HPA) patients; to determine the concentration of serum pre-albumin and selenium to discover the potential correlation between the amount of proteins in food and their metabolic control.
Material and methods:
The experimental group contained altogether 174 patients treated at the Department of Pediatrics of Medical Faculty of Masaryk University and University Hospital in Brno, of which 113 were children (age 1–18), 60 with PKU and 53 with HPA and 61 were adults (age 18–42), 51 with PKU and 10 with HPA. All PKU patients given a low-protein diet took AAM. HPA patients given a low-protein diet were divided into two groups; in the first group AAM was prescribed and in the other it was not.
Results:
We did not prove a statistically significant difference in the concentration of serum pre-albumin among the respective groups. We approved statistically significant difference in serum selenium concentrations of adult PKU and HPA patients (p=0.006; Mann-Whitney U test).
Conclusion:
The preparation of therapeutic restrictive diet for PKU and HPA patients is very difficult, and can cause nutritional deficiency. Patients’ adherence to the diet is not always good. To attend to adherence of the therapeutic restrictive diet and search new ways of treatment and monitoring of the nutrition status of phenylketonuric and hyperphenylalaninemic patients at the same time is necessarily.
Key words:
hyperphenylalaninemia, phenylketonuria, pre-albumin, selenium
Zdroje
1. Procházková D. Současné možnosti léčby hyperfenylalaninémie. Čes-slov Pediat 2010; 65: 452–458.
2. Crone MR, van Sprosen FJ, Oudshoorn K, et al. Behavioral factors related to metabolic control in patients with phenylketonuria. J Inherit Metab Dis 2005; 28: 627–637.
3. Rocha JC, Almeida MF, Carmona C, et al. The use od prealbumin concentrations as a biomarker of nutritional status in treated phenylketonuric patients. Ann Nutr Metab 2010; 56: 207–211.
4. Arnold GI, Vladutiu CJ, Kirby RS, et al. Protein insuffiency and linear growth restriction in phenylketonuria. J Pediatr 2002; 141: 243–246.
5. Dobbelaere D, Michaud L, Debrabander A, et al. Evaluation of nutritional status and pathophysiology of growth retardation in patients with phenylketonuria. J Inherit Metab Dis 2003; 26: 1–11.
6. Reilly C, Barrett JE, Patterson CM, et al. Trace element nutrition status and dietary intake of children with phenylketonuria. Am J Clin Nutr 1990; 52: 159–165.
7. Van Bakel MM, Printzen G, Wermuth B, et al. Antioxidant and thyroid status in selenium-deficient phenylketonuric and hyperphenylalaninemic patients. Am J Clin Nutr 2000; 72: 976–981.
8. Miranda da Cruz BD, Seidler H, Widhalm K. Iron status and iron supplementation in children with classical phenylketonuria. J Am Coll Nutr 1993; 12: 531–536.
9. Bodley JL, Austin VJ, Hanley WB, et al. Low iron status in infants and children with treated phenylketonuria: a population at risk for iron-deficiency anaemia and associated cognitive deficits. Eur J Pediatr 1993; 152: 140–143.
10. Acosta PB. Nutrition studies in treated infants and children with phenylketonuria: vitamins, minerals, trace elements. Eur J Pediatr 1996; 155: S136–139.
11. Hvas AM, Nexo E, Nielsen JB. Vitamin B12 and vitamin B6 suplementation is needed among adults with phenylketonuria (PKU). J Inherit Metab Dis 2006; 29: 47–53.
12. Robinson M, White FJ, Clary MA, et al. Increased risk of vitamin B12 deficiency in patients with phenylketonuria on an unrestricted or relaxed diet. J Pediatr 2000; 136: 545–547.
13. Vugteveen I, Hoeksma M, Monsen ALB, et al. Serum vitamin B12 concentrations within reference values do not exclude functional vitamin B12 deficiency in PKU patients of various ages. Mol Genet Metabol 2011; 102: 13–17.
14. Koletzko B, Sauerwald T, Demmelmair H, et al. Dietary long- chain polyunsaturated fatty acid supplementation in infants with phenylketonuria: a randomized controlled trial. J Inherit Metab Dis 2007; 30: 326–332.
15. Vilaseca MA, Briopnes P, Ferrari I, et al. Controlled diet in phenylketonuria may cause serum carnitine deficiency. J Inherit Metab Dis 1993; 16: 101–104.
16. Zeman J, Bayer M, Stepan J. Bone mineral density in patients with phenylketonuria. Acta Pediatr 1999; 88: 1348–1351.
17. Modan-Moses D, Vered I, Schwarz G. Peak bone mass in patients with phenylketonuria. J Inherit Metab Dis 2007; 30: 202–208.
18. Svačina S. Poruchy metabolismu a výživy. 1. vyd. Praha: Galén, 2010: 61–71, 447.
19. Ge K, Yang G. The epidemiology of selenium deficiency in the etiological study of endemic diseases in China. Am J Clin Nutr 1993; 57: 259S–263S.
20. Kohrle J, Brigelius-Flohe R, Bock A, et al. Selenium in biology: facts and medical perspectives. Biol Chem 2000; 381: 849–864.
21. Mahyar A, Ayzi P, Falladi M, et al. Correlation between serum selenium level and fibrile seizures. Pediatr Neurol 2010; 43: 331–334.
22. Shils ME, Olson JA, Shike M, et al. Modern Nutrition in Health and Disease. 9th ed. Baltimore: Williams and Wilkins, 1999: 1003–1056.
23. Blau N, Hoffmann GF, Leonard J, Clarke JTR. Physician´s Guide to the Treatment and Follow –up of Metabolic Diseases. 1st ed. Berlin, Heidelberg: Springer-Verlag, 2006: 28.
24. Gropper SS, Gropper DM, Acosta PB. Plasma amino acid response to ingestion of L-amino acids and whole protein. J Pediatr Gastroenterol Nutr 1993; 16: 143–150.
25. Bross R, Ball RO, Clarke JTR, Pencharz PB. Tyrosine requirements in children with classical PKU determined by indicator amino acid oxidation. Am J Physiol Endocrinol Metab 2000; 278: 195–201.
26. Barretto JR, Silva RL, Leite ME, et al. Poor zinc and selenium status in phenylketonuric children and adolescents in Brazil. Nutr Res 2008; 28: 208–211.
27. Kvíčala J. Zvýšení příjmu mikronutrientu selenu – utopie, fikce, prozřetelnost či nutnost. II. část. Interní Med 2003; 6: 295–300.
28. Muntau AC, Streiter M, Kappler M, et al. Age-related reference values for serum selenium concentrations in infants and children. Clin Chem 2002; 48: 555–560.
Štítky
Neonatology Paediatrics General practitioner for children and adolescentsČlánok vyšiel v časopise
Czech-Slovak Pediatrics
2012 Číslo 3
- What Effect Can Be Expected from Limosilactobacillus reuteri in Mucositis and Peri-Implantitis?
- The Importance of Limosilactobacillus reuteri in Administration to Diabetics with Gingivitis
Najčítanejšie v tomto čísle
- Unusual manifestations of parvovirus B19 infection in children
- Pyruvate kinase deficiency in children
- Variability in clinical manifestation of noroviral infection in a newborn: from fulminant necrotizing enterocolitis to asymptomatic course
- Benign infantile seizures associated with noroviral gastroenteritis