Changes in blood pressure and some other parameters in term infants during phototherapy
Authors:
L. Nandrážiová 1; K. Javorka 2,3; B. Czippelová 2,3; K. Maťašová 1
Authors‘ workplace:
Neonatologická klinika, Jesseniova lekárska fakulta v Martine, Univerzita Komenského v Bratislave, Univerzitná nemocnica Martin, Slovensko
1; Ústav lekárskej fyziológie, Jesseniova lekárska fakulta v Martine, Univerzita Komenského v Bratislave, Slovensko
2; Biomed, Martin, Slovensko
3
Published in:
Čes-slov Pediat 2019; 74 (8): 449-457.
Category:
Original Papers
Overview
hototherapy is the most frequent therapeutic intervention in neonatal wards during the first days of life. The beneficial effect of light on decreasing serum bilirubin level was first described by Cremer and colleagues in the 1950s. Since then, phototherapy has been used effectively in the treatment of severe hyperbilirubinaemia and has almost completely eliminated exchange transfusion. Phototherapy is a non-invasive method, but, in addition to decreasing bilirubin levels, it may affect some other function, e.g. organ perfusion, especially in skin, peripheral vascular resistance, blood flow distribution, heart frequency, systemic blood pressure and breathing. The next component of applied light is a certain influx of heat that warms the body surface up. There is a risk of exogenous overheating and increased water loss by skin.
We analyzed the effect of phototherapy on blood pressure and other parameters such as heart rate, respiratory rate, oxygen saturation, skin and rectal temperature. Comparison of control group (n=20) with patients with hyperbilirubinaemia and phototherapy (n=20) showed significant changes in some monitored parameters. Systolic, mean and diastolic blood pressure decreased significantly after the first hour of phototherapy (p=0.001; p=0.000; p=0.001), while at the end of the 2nd hour of phototherapy the drop was even more pronounced (p=0.002; p=0.000; p=0.003). During phototherapy, heart rate increased after 1 hour, even more significantly at the end of the 2nd hour of phototherapy (p=0.008; p=0.002), the respiratory rate also increased (p=0.033; p=0.015). These changes were accompanied by increasing skin and central (rectal) temperature. Based on the results, there are changes in some physiological parameters during phototherapy in newborns. Consistent monitoring of vital signs should therefore be an obvious part of care of the newborn during the treatment with blue light.
Keywords:
newborn – hyperbilirubinaemia – phototherapy – blood pressure
Sources
1. Nwokoye IC, Uleanya ND, Ibeziako NS, et al. Blood pressure values in healthy term newborns at a tertiary health facility in Enugu, Nigeria. Niger J Clin Pract 2015 Sep-Oct; 18 (5): 584–588.
2. Samanta M, Mondal R, Ray S, et al. Normative blood pressure data for Indian neonates. Indian Pediatr 2015 Aug; 52 (8) :669–673.
3. LeFlore JL, Engle WD. Clinical factors influencing blood pressure in the neonate. NeoReviews 2002 Aug; 3 (8).
4. Stebor AD. Basic principles of noninvasive blood pressure measurement in infants. Adv Neonatal Care 2005; 5 (5): 252–261.
5. Yurdakök M. Phototherapy in the newborn: what’s new? J Pediatr Neonat Individual Med 2015; 4 (2): e040255.
6. Liao SL. The role of bilirubin and phototherapy in the oxidative/antioxidant balance. Pediatr Neonatol 2015 Apr; 56 (2): 77–78.
7. Sarici D, Gunes T, Yazici C, et al. Investigation on malondialdehyde, S100B, and advanced oxidation protein product levels in significant hyperbilirubinemia and the effect of intensive phototherapy on these parameters. Pediatr Neonatol 2015 Apr; 56 (2): 95–100.
8. Maisels MJ, McDonagh AF. Phototherapy for neonatal jaundice. N Engl J Med 2008; 358: 920–992.
9. McDonagh AF. Bilirubin photo-isomers: regiospecific acyl glucuronidation in vivo. Monatsh Chem 2014; 145 (3): 465–482.
10. Bhutani VK. Committee on Fetus and Newborn; American Academy of Pediatrics. Phototherapy to prevent severe neonatal hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 2011; 128 (4): e1046–e1052.
11. Uhrikova Z, Zibolen M, Javorka K, et al. Hyperbilirubinemia and phototherapy in newborns: Effects on cardiac autonomic control Early Hum Dev 2015; 91: 351–356.
12. Bertini G, Perugi S, Elia S, et al. Transepidermal water loss and cerebral hemodynamics in preterm infants: conventional versus LED phototherapy. Eur J Pediatr 2008 Jan; 167 (1): 37–42.
13. Benders MJ, Van Bel F, Van de Bor M. Haemodynamic consequences of phototherapy in term infants. Eur J Pediatr 1999; 158: 323–328.
14. Benders MJ. The effect of phototherapy on cerebral blood flow velocity in preterm infants. Acta Paediatr 1998; 87: 786–792.
15. Benders MJ, Van Bel F, Van de Bor M. The effect of phototherapy on renal blood flow velocity in preterm infants. Biol Neonate 1998; 73: 228–234.
16. Benders MJ, Van Bel F, Van de Bor M. Cardiac output and ductal reopening during phototherapy in preterm infants. Acta Paediatr 1999 Sep; 88 (9): 1014–1019.
17. Borenstein-Levin L, et al. Effects of phototherapy on coronary blood flow in healthy neonates: A pilot study. Neonatology 2016; 110 (1): 75–82.
18. Pezzati M, et al. Changes in mesenteric blood flow response to feeding: conventional versus fiber-optic phototherapy. Pediatrics 2000 Feb; 105 (2): 350–353.
19. Demova K. Liečba novorodencov s patologickou nekonjugovanou hyperbilirubinémiou. http://slovenskaneonatologia.sk/wp-content//uploads/2017/04/Ovori%C5%A5-lie%C4%8Dbu-novorodencov-s-nekonjugovanou-hyperbilirubin%C3%A9miiou.pdf.
20. Stefanski M, et al. A scoring system for states of sleep and wakefulness in term and preterm infants. Pediatr Res 1984 Jan; 18 (1): 58–62.
21. Javorka K, Zavarska Ľ. Zmeny systémového tlaku krvi a kardiorespiračných parametrov u nedonosených novorodencov počas fototerapie. Čes-slov Pediat 1990; 45 (4): 230–232.
22. Abu Faddan NH, et al. Effect of phototherapy on blood levels of endothelin-1 and nitric oxide in hyberbilirubinemic newborn infants. e-Journal of Neonatology Research 2014 Jan; Vol 4, Issue 1.
23. Ergenekon E, Gücüyener K, Dursun H, et al. Nitric oxide production in newborns under phototherapy. Nitric Oxide 2002 Feb; 6 (1): 69–72.
24. Turan O, Ergenekon E, Koc E, et al. Impact of phototherapy on vasoactive mediators: NO and VEGF in the newborn. J Perinat Med 2004; 32: 359–364.
25. Liu GS, Wu H, Wu BQ, et al. Effect of phototherapy on blood endothelin and nitric oxide levels: clinical significance in preterm infants. World J Pediatr 2008; 4 (1): 31–35.
26. Barrett KE, Boitano S, Barman SM, Brooks HL. Chapter 32: Cardiovascular regulatory mechanisms. Ganong‘s Review of Medical Physiology. 24th ed. McGraw-Hill, New York, NY, 2012.
27. Mehta S, Kumar P, Narang A. A randomized controlled trial of fluid supplementation in term neonates with severe hyperbilirubinemia. J Pediatr 2005; 147: 781–785.
28. Maayan-Metzger A, Yosipovitch G, Hadad E, Sirota L. Transepidermal water loss and skin hydration in preterm infants during phototherapy. Am J Perinatol 2001; 18 (7): 393–396.
29. Demirsoy U, Nalbantoglu B, Nalbantoglu A, et al. Effect of fluid supplementation on serum bilirubin level during phototherapy of exclusively breastfed term infants with hyperbilirubinemia. Breastfeed Med 2011; Nov 2.
30. Aydemir O, Soysaldi E, Kale Y, et al. Body temperature changes of newborns under fluorescent versus LED phototherapy. Indian J Pediatr 2014; 81 (8): 751–754.
31. Gheshmi AN, Naderi S, Homayranie, Safari B. Prevalence of hypocalcemia after phototherapy among neonates who underwent phototherapy in Koodakan Hospital in Bandar Abbas in 2013. Electron Physician 2015 Oct; 7 (6): 1387–1390.
32. Singh M, Jadhav HR. Melatonin: functions and ligands. Drug Discov Today 2014; 19 (9): 1410–1418.
33. Sedlak TW, Snyder SH. Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle. Pediatrics 2004; 113 (6): 1776–1782.
34. Maťašová K. Materské mlieko a novorodenecká žltačka. In: Jeseňák M, et al. Materské mlieko a dojčenie v kontexte modernej medicíny. A-medi Management, 2015: 115–122.
35. Arnold C, Pedroza C, Tyson JE. Phototherapy in ELBW newborns: does it work? Is it safe? The evidence from randomized clinical trials. Semin Perinatol 2014; 38 (7): 452–464.
Labels
Neonatology Paediatrics General practitioner for children and adolescentsArticle was published in
Czech-Slovak Pediatrics
2019 Issue 8
- What Effect Can Be Expected from Limosilactobacillus reuteri in Mucositis and Peri-Implantitis?
- The Importance of Limosilactobacillus reuteri in Administration to Diabetics with Gingivitis
Most read in this issue
- Amniotic fluid aspiration in newborn
- Doporučený postup České pediatrické společnosti a Odborné společnosti praktických dětských lékařů ČLS JEP pro suplementaci dětí a dospívajících vitaminem D
- Adenoid vegetation and adenoidectomy in children
- Treatment of appendicitis in pediatric patients – Status quo 2017