Nanopathology as a new scientific discipline
Minireview
Authors:
Jana Dvořáčková 1,2; Hana Bielniková 2; Jirka Mačák 1,2
Authors place of work:
Lékařská fakulta Ostravská univerzita v Ostravě
1; Ústav patologie, Fakultní nemocnice v Ostravě
2
Published in the journal:
Čes.-slov. Patol., 49, 2013, No. 1, p. 46-50
Category:
Trends
Summary
The detection of metal particles in the pathologically altered tissues (eg. in inflammatory lesions or tumors) led to the idea that they might be associated with emergence of some idiopathic diseases. To understand the etiopathogenesis of diseases associated with the presence of nanoparticles in the tissue there is a new area of patology - nanopathology. Numerous studies have shown that nanoparticles can enter the human body through inhalation or ingestion. Through the pulmonary alveoli, skin and intestinal mucosa, the nanoparticles may reach the blood and lymphatic system, which subsequently distributes them to other target organs. Epithelial surfaces of conjunctiva and skin represent another potential way of penetration of nanoparticles into the body. There is a number of studies, which described the adverse effects of ultrafine particles on respiratory and cardiovascular system. Recent studies have also shown that some nanoparticles are able to pass through the pores of the nuclear membrane, where they may pose a risk of damage to cells and genetic information and they are also potentially capable to cross the placental and hematoencephalic barriers. Further, their role in the induction of oxidative stress is significant in relation to the mutagenesis. Scanning electron microscopy with energy disperse spectroscopy (SEM-EDS) represents a suitable tool for identification of metal-based particles in tissues and body fluids. Importance of nanopathogy can be seen in the elucidation of the etiopathogenesis of many diseases, not only of respiratory and cardiovascular systems, but also of many other organ systems.
Keywords:
nanoparticles – nanopathology – diseases of nanoparticles (nanopathologies) – ESEM-EDS
Zdroje
1. http://iga.mzcr.cz/shareIGA/RPV_III.pdf
2. www.esf.org
3. Drexler KE. Engines of creation. The coming era of nanotechnology (1st ed.). Anchor Books: New York; 1986: 320.
4. Drexler KE. Nanosystems: Molecular machinery, manufacturing and computation (1st ed.) Wiley: New York; 1992: 576.
5. Ježek M. Nanomedicína jako standard, během několika let, říkají vědci. Zdravotnické noviny 2008; 47: 22-24.
6. Bureau International des Poids et Mesures. Le SystŹme international d’unités (SI) – The International System of Units (SI) (8th ed). Paris: Stedi-Media; 2006: 5, 32.
7. Hlaváček A. Nanočástice a jejich biokonjugáty. www.nanobio.cz/articles: 2011; 1.
8. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005; 113(7): 823-839.
9. Shvedova AA, Kisin ER, Porter D, et al. Mechanism of pulmonary toxicity and medical applications of carbon nanotubes. Two face of Janus? Pharmacol Ther 2009; 121(2): 192-204.
10. Firme CP, Bandaru PR. Toxicity issues in the application of carbonanotubes to biological systems. Nanomed: Nanotech Biol Med 2010; 6(2): 245-256.
11. Hu X, Cook S, Wang P, Hwang H, Liu X, Williams QL. In vitro evaluation of cytotoxicity of engineered carbon nanotubes in selected human cell lines. Sci Total Environ 2010; 408(8): 1812-1817.
12. Gatti AM, Montanari S. Nanopathology. The health impact of nanoparticles (1st ed.) Singapore: Pan Stanford Publishing; 2008: 312.
13. http://steng.giftfabrikken.nu/media/Nanopartikler.pdf
14. Hansen T, Clermont G, Gatti AM, et al. Biological tolerance of different materials in bulk and nanoparticulate form in a rat model. Sarcoma development by nanoparticles. J R Soc Interface 2006; 3(11): 767-775.
15. Peters K, Unger RE, Kirkpatrick CJ, Gatti AM, Monari E. Effects of nano-scaled particles on endothelial cell function in vitro: Studies on viability, proliferation and inflammation. J Mater Sci Mater Med 2004; 15(4): 32-325.
16. Chiu S, Niles JK, Webber MP, Zeig-Owens R, Gustave J, Lee R, Rizzotto L, Kelly KJ, Cohen HW, Prezant DJ. Evaluating risk factors and possible mediation effects in posttraumatic depression and posttraumatic stress disorder comorbidity. Public Health Rep. 2011; 126(2): 201-209.
17. Chiu S, Webber MP, Zeig-Owens R, Gustave J, Lee R, Kelly KJ, Rizzotto L, McWilliams R, Schorr JK, North CS, Prezant DJ. Performance characteristics of the PTSD Checklist in retired firefighters exposed to the World Trade Center disaster. Ann Clin Psychiatry. 2011; 23(2): 95-104.
18. Cukor J, Wyka K, Jayasinghe N, Weathers F, Giosan C, Leck P, Roberts J, Spielman L, Crane M, Difede J Prevalence and predictors of posttraumatic stress symptoms in utility workers deployed to the World Trade Center following the attacks of September 11, 2001. Depress Anxiety. 2011; 28(3): 210-217.
19. DiGrande L, Neria Y, Brackbill RM, Pulliam P, Galea S. Long-term posttraumatic stress symptoms among 3,271 civilian survivors of the September 11, 2001, terrorist attacks on the World Trade Center. Am J Epidemiol. 2011; 173(3): 271-281.
20. Zhou L; Wan-Xi Y, Nanoparticles and Spermatogenesis: How do Nanoparticles Affect Spermatogenesis and Penetrate the Blood–testis Barrier. Nanomedicine 2012; 7(4): 579-596.
21. Panyala N, Pena-Mendez E, Havel J. Silver or silver nanoparticles: a hazardous threat to the environment and human health. J Appl Biomed 2008; 6: 117–129.
22. Hussain SM, Braydich-Stolle LK, Schrand AM, et al. Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Adv Mater 2009; 21(16): 1549–1559.
23. Stern ST, McNeil SE. Nanotechnology safety concerns revisited. Toxicol Sci 2008; 101(1): 4–21.
24. Tsai C, Shiau A, Chen S, Chen Y, Cheng P, Chang M. Amelioration of collagen-induced arthritis in rats by nanogold. Arthritis Rheum. 2007; 56(2): 544–554.
25. Geiser M, Kreyling WG. Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol. 2010; 7(2): 1-17.
26. Gatti AM, Montanari S, Monari E, Gambarelli A, Capitani F, Parisini B. Detection of micro- and nano-sized biocompatible particles in the blood. J Mater Sci Mater Med. 2004; 15(4): 469-472.
27. http://ec.europa.eu/environment/chemicals/nanotech/pdf/commission_recommendation
28. Limbach LK, Bereiter R, Müller E, Krebs R, Gälli R, Stark WJ. Removal of oxide nanoparticles in a model wastewater treatment plant: Influence of agglomeration and surfactants on clearing efficiency. Environ Sci Technol 2008; 42(15): 5828-5833.
29. Xia T, Kovochich M, Brant J, et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 2006; 6(8): 1794-1807.
30. Chen X, Deng C, Tang S, Zhang M. Mitochondria-dependent apoptosis induced by nanoscale hydroxiapatite in human gastric cancer SGC-7901 cells. Biol Pharm Bull 2007; 30(1): 128-132.
31. Wang J, Li N, Zheng L, et al. P38-Nrf-2 signaling pathway of oxidative stress in mice caused by nanoparticulate TiO2. Biol. Trace Elem. Res.2011; 140 (2): 186–197.
32. Gurr JR, Wang AS, Chen CH, Jan KY. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 2005; 213(1–2): 66–73.
33. Hartwig A. Carcinogenicity of metal compounds: possible role of DNA repair inhibition. Toxicol Lett 1998; 102-103: 235-239.
34. Mehta M, Chen LCh, Gordon T, Rom W, Tang MS. Particulate matterinhibits DNA repair and enhances mutagenesis. Mutat Res 2008; 657(2): 116-121.
35. Okada S. Iron-induced tissue damage and cancer: The role of reactive oxygen species-free radicals. Pathol Int 1996; 46(5): 311-332.
36. Reichrtová E, Dorociak F, Palkovičová L. Sites of lead and nickel accumulation in the placental tissue. Hum Exp Toxicol 1998; 17(3):176-181.
37. Claderon-Garciduenas L, Azzarelli B, Acuna H, et al. Air pollution and brain damage. Toxicol Pathol 2002; 30(3): 373-389.
38. Zeleník K, Kukutschová J, Dvořáčková J, Bielniková H, Peikertová P, Cábalová L, Komínek P. Possible role of nano-sized particles in chronic tonsillitis and tonsillar carcinoma: a pilot study. Eur Arch Otorhinolaryngol. In press 2013.
39. Liati A, Eggenschwiler PD. Characterization of particulate matter deposited in diesel particulate filters: Visual and analytical approach in macro-, micro-and nano-scales. Comb and Fl 2010; 157(9): 1658-1670.
40. Verhoeven JD, Pendray AH, Clark HF. Wear test of steel knife blades. Wear 2008; 265: 1093-1099.
41. Kukutschová J, Moravec P, Tomášek V, et al. On airbone nano/micro-sized wear particles released from low-metallic automative brakes. Environ Poll 2011; 159(4): 998-1006.
42. Kreider ML, Panko JM, McAtee BL, Sweet LI, Finley BL. Physical and chemical characterization of tire-related particles: Comparison of particles generated using different methodologies. Sci Total Environ 2010; 408(3): 652-659.
43. Kukutschová J, Roubíček V, Malachová K, et al. Wear mechanism in automotive brake materials, wear debris and its potential environmental impact. Wear 2009; 267: 807-817.
44. Seidlerová J. Metody hodnocení metalurgických odpadů, (1th end). Ostrava: Repronis; 2009.
45. Sezimová H, Malachová K, Rybková Z, Truxocá I, Krejčí B. Toxikologický a genotoxikologický screening kvality ovzduší v centru Ostravy, Acta Enviromentalica Universitatis Comenianae 2012; 20(1): 76-81.
46. Cheng YH, Chao YC, Wu CH, Tsai CJ, Uang SN, Shih TS. Measurements of ultrafine particle concentrations and size distributionin an iron foundry. J Hazard Mater 2008; 158(1): 124-130.
47. http://www.advisorybodies.doh.gov.uk/comeap/statementsreports/CardioDisease.pdf
48. Ahamed M, Alsahli MS, Siddiqui MK. Silver nanoparticle applications and human health. Clin Chem Acta 2010; 411(23-24): 1841-1848.
49. Nohavica D. Rizika nanomateriálů a nanotechnologií pro lidské zdraví a životní prostředí. Čs. Čas. Fyz. 2011; 61(3): 220-227.
50. Dvořáček I. Postup lékaře při úmrtí mimo zdravotnické zařízení a následná součinnost s orgány PČR. Soud lek. 2005; 4: 54-56.
Štítky
Anatomical pathology Forensic medical examiner ToxicologyČlánok vyšiel v časopise
Czecho-Slovak Pathology
2013 Číslo 1
Najčítanejšie v tomto čísle
- Czech eponyms in pathology
-
Gastric dysplasias.
A clinicopathological study of 35 cases - Autophagic vacuolar myopathies: what we have learned from the differential diagnosis of vacuoles in muscle biopsy
-
Nanopathology as a new scientific discipline
Minireview