#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Gastrointestinal stromal tumor (GIST): Advances in 2013


Authors: Ondřej Daum 1,2 ;  Monika Šedivcová 2
Authors place of work: Šiklův ústav patologie LF UK a FN Plzeň 1;  Bioptická laboratoř, s. r. o., Plzeň 2
Published in the journal: Čes.-slov. Patol., 50, 2014, No. 2, p. 76-80
Category: Reviews Article

Summary

Gastrointestinal stromal tumors (GIST) are currently regarded as a heterogenous group of tumors sharing common histological appearance, KIT immunopositivity and supposed origin from tissue progenitor cells capable of differentiation into the phenotype of Cajal interstitial cells. GISTs can be divided according to immunoexpression of the beta subunit of mitochondrial enzyme succinate dehydrogenase (SDHB) to SDHB-positive (encompassing KIT, PDGFRA and NF1 mutated GISTs), and SDHB-deficient GISTs (including Carney-Stratakis syndrome, Carney triad, sporadic pediatric GISTs, and a small subset of sporadic adult GISTs). The individual molecular subtypes differ in biological behavior and in their response to systemic targeted therapy, which is indicated in metastatic GISTs or in tumors with high risk of recurrence. Although several risk-stratification classifications have been developed, strictly defined criteria to identify patients at risk are still lacking. Pharmacogenomics have been successful in designing drugs to overcome not only the primary resistance of GISTs to the action of imatinib (e.g. GISTs with a substitution of Asp842Val in exon 18 PDGFRA or SDHB-deficient GISTs), but also the secondary resistance caused by secondary mutation of a gene encoding either the receptor tyrosine kinase or other molecules involved in the respective signalling cascade. Future directions concentrate on rational molecular targeting for systemic therapy based on complex genetic investigation of the tumor. Peripheral blood is planned to be used as a source of information for genetic events responsible for the secondary resistance of metastatic tumors.

Keywords:
GIST – KIT – PDGFRA – SDH – stromal tumor


Zdroje

1. Augustiňáková A, Kodet R. Molekulární diagnostika gastrointestinálních stromálních tumorů ve vztahu k predikci terapeutické odpovědi na cílenou biologickou léčbu. Cesk Patol 2011; 47(4): 148-152.

2. Amar L, Bertherat J, Baudin E, et al. Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol 2005; 23(34): 8812-8818.

3. Burnichon N, Rohmer V, Amar L, et al. The succinate dehydrogenase genetic testing in a large prospective series of patients with paragangliomas. J Clin Endocrinol Metab 2009; 94(8): 2817-2827.

4. Burnichon N, Briere JJ, Libe R, et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet 2010; 19(15): 3011-3020.

5. Carney JA, Stratakis CA. Familial paraganglioma and gastric stromal sarcoma: a new syndrome distinct from the Carney triad. Am J Med Genet 2002; 108(2): 132-139.

6. Pasini B, McWhinney SR, Bei T, et al. Clinical and molecular genetics of patients with the Carney-Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur J Hum Genet 2008; 16(1): 79-88.

7. Stratakis CA, Carney JA. The triad of paragangliomas, gastric stromal tumours and pulmonary chondromas (Carney triad), and the dyad of paragangliomas and gastric stromal sarcomas (Carney-Stratakis syndrome): molecular genetics and clinical implications. J Intern Med 2009; 266(1): 43-52.

8. Killian JK, Kim SY, Miettinen M, et al. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discovery 2013; 3(6): 648-657.

9. Mason EF, Hornick JL. Succinate dehydrogenase deficiency is associated with decreased 5-hydroxymethylcytosine production in gastrointestinal stromal tumors: implications for mechanisms of tumorigenesis. Mod Pathol 2013; 26(11): 1492-1497.

10. Ricketts CJ, Shuch B, Vocke CD, et al. Succinate dehydrogenase kidney cancer: an aggressive example of the Warburg effect in cancer. J Urol 2012; 188(6): 2063-2071.

11. Belinsky MG, Rink L, von Mehren M. Succinate dehydrogenase deficiency in pediatric and adult gastrointestinal stromal tumors. Frontiers in Oncology 2013; 3(3): 117.

12. Corless CL, Heinrich MC. Molecular pathobiology of gastrointestinal stromal sarcomas. Annu Rev Pathol 2008; 3(3): 557-586.

13. Gill AJ, Chou A, Vilain R, et al. Immunohistochemistry for SDHB divides gastrointestinal stromal tumors (GISTs) into 2 distinct types. Am J Surg Pathol 2010; 34(5): 636-644.

14. Miettinen M, Killian JK, Wang ZF, et al. Immunohistochemical loss of succinate dehydrogenase subunit A (SDHA) in gastrointestinal stromal tumors (GISTs) signals SDHA germline mutation. Am J Surg Pathol 2013; 37(2): 234-240.

15. Wagner AJ, Remillard SP, Zhang YX, et al. Loss of expression of SDHA predicts SDHA mutations in gastrointestinal stromal tumors. Mod Pathol 2013; 26(2): 289-294.

16. Gold JS, Gonen M, Gutierrez A, et al. Development and validation of a prognostic nomogram for recurrence-free survival after complete surgical resection of localised primary gastrointestinal stromal tumour: a retrospective analysis. Lancet Oncol 2009; 10(11): 1045-1052.

17. Dematteo RP, Ballman KV, Antonescu CR, et al. Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet 2009; 373(9669): 1097-1104.

18. ESMO group. Gastrointestinal stromal tumors: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2012; 23 (Suppl 7): vii49-55.

19. Casali PG, Blay JY. Gastrointestinal stromal tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2010; 21 (Suppl 5): v98-102.

20. Miettinen M, Lasota J. Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin Diagn Pathol 2006; 23(2): 70-83.

21. Joensuu H, Vehtari A, Riihimaki J, et al. Risk of recurrence of gastrointestinal stromal tumour after surgery: an analysis of pooled population-based cohorts. Lancet Oncol 2012; 13(3): 265-274.

22. Hartmann K, Wardelmann E, Ma Y, et al. Novel germline mutation of KIT associated with familial gastrointestinal stromal tumors and mastocytosis. Gastroenterology 2005; 129(3): 1042-1046.

23. Huss S, Kunstlinger H, Wardelmann E, et al. A subset of gastrointestinal stromal tumors previously regarded as wild-type tumors carries somatic activating mutations in KIT exon 8 (p.D419del). Mod Pathol 2013; 26(7): 1004-1012.

24. Pantaleo MA, Nannini M, Astolfi A, Biasco G. A distinct pediatric-type gastrointestinal stromal tumor in adults: potential role of succinate dehydrogenase subunit A mutations. Am J Surg Pathol 2011; 35(11): 1750-1752.

25. Miettinen M, Wang ZF, Sarlomo-Rikala M, et al. Succinate dehydrogenase-deficient GISTs: a clinicopathologic, immunohistochemical, and molecular genetic study of 66 gastric GISTs with predilection to young age. Am J Surg Pathol 2011; 35(11): 1712-1721.

26. Heinrich MC, Griffith D, McKinley A, et al. Crenolanib inhibits the drug-resistant PDGFRA D842V mutation associated with imatinib-resistant gastrointestinal stromal tumors. Clin Cancer Res 2012; 18(16): 4375-4384.

27. Demetri GD, Reichardt P, Kang YK, et al. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013; 381(9863): 295-302.

28. Schoffski P, Reichardt P, Blay JY, et al. A phase I-II study of everolimus (RAD001) in combination with imatinib in patients with imatinib-resistant gastrointestinal stromal tumors. Ann Oncol 2010; 21(10): 1990-1998.

29. Richardson AL, Iglehart JD. BEAMing up personalized medicine: mutation detection in blood. Clin Cancer Res 2012; 18(12): 3209-3211.

30. Chou A, Chen J, Clarkson A, et al. Succinate dehydrogenase-deficient GISTs are characterized by IGF1R overexpression. Mod Pathol 2012; 25(9): 1307-1313.

31. Lasota J, Wang Z, Kim SY, Helman L, Miettinen M. Expression of the receptor for type 1 insulin-like growth factor (IGF1R) in gastrointestinal stromal tumors: an immunohistochemical study of 1078 cases with diagnostic and therapeutic implications. Am J Surg Pathol 2013; 37(1): 114-119.

Štítky
Anatomical pathology Forensic medical examiner Toxicology

Článok vyšiel v časopise

Czecho-Slovak Pathology

Číslo 2

2014 Číslo 2

Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#