Relationship of glycemic variability and diabetes risk factors in pregnant women
Authors:
Martina Gáborová 1; Viera Doničová 2
Authors place of work:
Ústav lekárskej fyziológie LF UPJŠ v Košiciach
1; Interná a diabetologická ambulancia, Košice
2
Published in the journal:
Diab Obez 2022; 22(43): 9-15
Category:
Original paper
Summary
The aim of this study was to compare glycemic variability (GV) in pregnant women with and without gestational diabetes mellitus and also to assess the relationship of glycemic variability to risk factors for diabetes. Pregnant women enrolled in the study were divided into a group of women with gestational diabetes mellitus (GDM) and without gestational diabetes mellitus, i.e., the control group (CG), based on the results of the oral glucose tolerance test (oGTT, 2018 Slovak Diabetes Society criteria). After collection of anamnestic, biometric and biochemical parameters, the pregnant women were set up for double-blind 7-day glucose measurement using continuous glucose monitoring (iPro2®Professional CGM).Glycemic variability as expressed by glycemic area under the concentration curve (Total AUC) was statistically significantly higher in women with GDM compared to KS (p = 0,006). The other parameters of glycemic variability [standard deviation, coefficient of variability, J-index, percentage of time spent above the target value of 7.8 mmol/l (%TAR), percentage of time in the target range of 3.5–7.8 mmol/l (%TIR), percentage of time below the target value of 3.5 mmol/l (%TBR)] were not statistically significantly different in the follow-up groups. Diabetes risk factors (positive family history of diabetes, preconception BMI, higher weight gain and higher age at conception) were significantly correlated with glycemic control parameters. In our study, we found that all pregnant women with diabetes risk factors present tended to have higher glycemic variability associated with various feto-uterine complications.
Keywords:
continuous glucose monitoring – gravidity – glycemic compensation – glycemic variability – GDM risk factors
Zdroje
1. Kropff J, Bruttomesso D, Doll W et al. Accuracy of Two Continuous Glucose Monitoring Systems: A Head-to-Head Comparison under Clinical Research Centre and Daily Life Conditions. Diabetes Obes Metab 2015; 17(4): 343–349. Dostupné z DOI: <http://dx.doi.org/10.1111/dom.12378>.
2. Rodbard D. Continuous Glucose Monitoring: A Review of Successes, Challenges, and Opportunities. Diabetes Technol Ther 2016; 18(Suppl 2): S3–S13. Dostupné z DOI: <http://dx.doi.org/10.1089/dia.2015.0417>.
3. Yu Q, Aris IM, Tan KH et al. Application and Utility of Continuous Glucose Monitoring in Pregnancy: A Systematic Review. Front Endocrinol (Lausanne) 2019; 10: 697. Dostupné z DOI: <http://dx.doi.org/10.3389/fendo.2019.00697>.
4. Kautzky-Willer A, Harreiter J, Winhofer-Stockl Y et al. Gestational Diabetes Mellitus (Update 2019). Wien Klin Wochenschr 2019; 131(Suppl 1): 91–102. Dostupné z DOI: <http://dx.doi.org/10.1007/s00508–018–1419–8>.
5. Sawada M, Masuyama H, Hayata K et al. Pregnancy Complications and Glucose Intolerance In Women With Polycystic Ovary Syndrome. Endocr J 2015; 62(11): 1017–1023. Dostupné z DOI: <http://dx.doi.org/10.1507/endocrj.EJ15–0364>.
6. Yu HF, Chen HS, Rao DP et al. Association between Polycystic Ovary Syndrome and the Risk of Pregnancy Complications: A Prisma-Compliant Systematic Review and Meta-Analysis. Medicine 2016; 95(51): E4863. Dostupné z DOI: <http://dx.doi.org/10.1097/MD.0000000000004863>.
7. Gatti M. Feasibility of Freestyle Libre Flash Glucose Monitoring System in Pregnant Woman Affected by Type 1 Diabetes. Acta Diabetol 2019; 56(4): 481–483. Dostupné z DOI: <http://dx.doi.org/10.1007/s00592–018–1252–6>.
8. Tyndall V, Stimson RH, Zammitt NN et al. Marked Improvement in HbA1c Following Commencement of Flash Glucose Monitoring in People with Type 1 Diabetes. Diabetologia 2019; 62(8): 1349–1356. Dostupné z DOI: <http://dx.doi.org/10.1007/s00125–019–4894–1>.
9. Vlachova Z, Bytoft B, Knorr S et al. Increased metabolic risk in adolescent offspring of mothers with type 1 diabetes: The Epicom Study. Diabetologia 2015; 58(7): 1454–1463. Dostupné z DOI: <http://dx.doi.org/10.1007/s00125–015–3589–5>.
10. Miao M, Dai M, Zhang Y et al. Influence of maternal overweight, obesity and gestational weight gain on the perinatal outcomes in women with gestational diabetes mellitus. Sci Rep 2017; 7(1): 305. Dostupné z DOI: <http://dx.doi.org/10.1038/s41598–017–00441-z>.
11. Law GR, Ellison GT, Secher AL et al. Analysis of continuous glucose monitoring in pregnant women with diabetes: Distinct Temporal patterns of glucose associated with large-for-gestational-age infants. Diabetes Care 2015; 38(7): 1319–1325. Dostupné z DOI: <http://dx.doi.org/10.2337/dc15–0070>.
12. Danne T, Nimri R, Battelino T et al. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care 2017; 40(12): 1631–1640. Dostupné z DOI: <http://dx.doi.org/10.2337/dc17–1600>.
13. Kramer G, Michalak L. Association between flash glucose monitoring and metabolic control as well as treatment satisfaction in outpatients with diabetes type 1. Exp Clin Endocrinol Diabetes 2019; 129(4): 303–308. Dostupné z DOI: <http://dx.doi.org/10.1055/a-0875–3988>.
14. Battelino T, Danne T, Bergenstal RM et al. Clinical Targets for Continuous Monitoring Data Interpretation: Recommendations from the international consensus on time in range. Diabetes Care 2019; 42(8): 1593–1603. Dostupné z DOI: <http://dx.doi.org/10.2337/dci19–0028>.
15. Martinka E. Diagnostika diabetes mellitus. Forum Diab 2018; 7(Suppl 1): 15–17.
16. Mastrototaro JJ. The Minimed Continuous Glucose Monitoring System. Diabetes Technol Ther 2000; 2(Suppl 1): S13–S18. Dostupné z DOI: <http://dx.doi.org/10.1089/15209150050214078>.
17. Wojcicki JM. “J”-Index. A New proposition of the assessment of current glucose control in diabetic patients. Horm Metab Res 1995; 27(1): 41–42. Dostupné z DOI: <http://dx.doi.org/10.1055/s-2007–979906>.
18. Panyakat WS, Phatihattakorn C, Sriwijitkamol A et al. Correlation between third trimester glycemic variability in non-insulin-dependent gestational diabetes mellitus and adverse pregnancy and fetal outcomes. J Diabetes Sci Technol 2018; 12(3): 622–629. Dostupné z DOI: <http://dx.doi.org/10.1177/1932296817752374>.
19. Rayis DA, Ahmed AB, Sharif ME et al. Reliability of glycosylated hemoglobin in the diagnosis of gestational diabetes mellitus. J Clin Lab Anal 2020; 34(10): e23435. Dostupné z DOI: <http://dx.doi.org/10.1002/jcla.23435>.
20. Kwon SS, Kwon JY, Park YW et al. Hba1c for diagnosis and prognosis of gestational diabetes mellitus. Diabetes Res Clin Pract 2015; 110(1): 38–43. Dostupné z DOI: <http://dx.doi.org/10.1016/j.diabres.2015.07.014>.
21. Dubey D, Kunwar S. Mid-Trimester Glycosylated Hemoglobin Levels (Hba1c) and its correlation with oral glucose tolerance test (World Health Organization 1999). J Obstet Gynaecol Res 2019; 45(4): 817–823. Dostupné z DOI: <http://dx.doi.org/10.1111/jog.13916>.
22. Ryu AJ, Moon HJ, Na JO et al. The usefulness of the glycosylated hemoglobin level for the diagnosis of gestational diabetes mellitus in the korean population. Diabetes Metab J 2015; 39(6): 507–511. Dostupné z DOI: <http://dx.doi.org/10.4093/dmj.2015.39.6.507>.
23. Yu W, Wu N, Li L et al. A review of research progress on glycemic variability and gestational diabetes. Diabetes Metab Syndr Obes 2020; 13: 2729–2741. Dostupné z DOI: <http://dx.doi.org/10.2147/DMSO.S261486>.
24. Vigersky RA, Shin J, Jiang B et al. The Comprehensive Glucose Pentagon: A Glucose-Centric Composite Metric for Assessing Glycemic Control in Persons with Diabetes. J Diabetes Sci Technol 2018; 12(1): 114–123. Dostupné z DOI: <http://dx.doi.org/10.1177/1932296817718561>.
25. Zaharieva DP, Teng JH, Ong ML et al. Continuous Glucose Monitoring Versus Self-Monitoring of blood glucose to assess glycemia in gestational diabetes. Diabetes Technol Ther 2020; 22(1): 822–827. Dostupné z DOI: <http://dx.doi.org/10.1089/dia.2020.0073>.
26. Irving RR, Mills JL, Choo-Kang EG et al.The Burden of Gestational Diabetes Mellitus in Jamaican Women with a Family History of Autosomal Dominant Type 2 Diabetes. Rev Panam Salud Publica 2008; 23(2): 85–91. Dostupné z DOI: <http://dx.doi.org/10.1590/s1020–49892008000200003>.
27. Barros GM, Figueiredo LD, Souza PA et al. Risk Factors for Constant Glycemic Variability in Pregnant Women: A Case-Control Study. Rev Bras Enferm 2020; 73(Suppl 5): e20180983. Dostupné z DOI: <http://dx.doi.org/10.1590/0034–7167–2018–0983>.
28. Heerman WJ, Bian A, Shintani A et al. Interaction between Maternal Prepregnancy Body Mass Index and Gestational Weight Gain Shapes Infant Growth. Acad Pediatrics 2014; 14(5): 463–470. Dostupné z DOI: <http://dx.doi.org/10.1016/j.acap.2014.05.005>.
29. Ranheim T, Haugen F, Staff AC et al. Adiponectin is reduced in gestational diabetes mellitus in normal weight women. Acta Obstet Gynecol Scand 2004; 83(4): 341–347. Dostupné z DOI: <http://dx.doi.org/10.1111/j.0001–6349.2004.00413.x>.
30. Saisho Y, Miyakoshi K, Ikenoue S et al. Marked Decline in Beta Cell Function during Pregnancy Leads To the Development of Glucose Intolerance In Japanese Women. Endocr J 2013; 60(4): 533–539.
31. Cyganek K, Hebda-Szydlo A, Skupien J et al. Glycemic control and pregnancy outcomes in women with type 2 diabetes from Poland. The impact of pregnancy planning and a comparison with Type 1 Diabetes Subjects. Endocrine 2011; 40(2): 243–249. Dostupné z DOI: <http://dx.doi.org/10.1007/s12020–011–9475–0>.
32. Persson M, Pasupathy D, Hanson U et al. Birth Size Distribution in 3,705 Infants Born to Mothers with Type 1 Diabetes: A Population-Based Study. Diabetes Care 2011; 34(5): 1145–1149. Dostupné z DOI: <http://dx.doi.org/10.2337/dc10–2406>.
33. Scifres CM, Feghali MN, Althouse AD et al. Effect of Excess Gestational Weight Gain on Pregnancy Outcomes in Women with Type 1 Diabetes. Obstet Gynecol 2014; 123(6) 1295–1302. Dostupné z DOI: <http://dx.doi.org/10.1097/AOG.0000000000000271>.
34. Rajab KE, Issa AA Hasan ZA et al. Incidence of Gestational Diabetes Mellitus in Bahrain from 2002 to 2010. Int Fed Gynaecol Obstet 2012; 117(1): 74–77. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ijgo.2011.11.013>.
35. Somani B, Arora M, Bhatia K et al. A Comparative Study of the Different Diagnostic Criteria of Gestational Diabetes Mellitus and its Incidence. Med J Armed Forces India 2012; 68(1): 6–11. Dostupné z DOI: <http://dx.doi.org/10.1016/S0377–1237(11)60124-X>.
36. Hedderson MM, Gunderson EP, Ferrara A. Gestational Weight Gain and Risk of Gestational Diabetes Mellitus. Obstet Gynecol 2010; 115(3): 597–604. Dostupné z DOI: <http://dx.doi.org/10.1097/AOG.0b013e3181cfce4f>.
Štítky
Diabetology ObesitologyČlánok vyšiel v časopise
Diabetes and obesity
2022 Číslo 43
Najčítanejšie v tomto čísle
- Treatment with biosimilar insulin in routine clinical practice in Slovakia: case reports
- Cardiovascular effect of GLP-1 receptor agonists: meta-analyses suggest a class effect
- Relationship of glycemic variability and diabetes risk factors in pregnant women
- Use of SGLT2 inhibitors in type 2 diabetics at different stages of the cardiovascular continuum