#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Monitoring changes in invasive disease caused by Haemophilus influenzae in the Czech Republic between 1999 and 2020


Authors: J. Vlach 1;  V. Lebedová 2;  M. Musílek 1;  J. Kozáková 1
Authors‘ workplace: SZÚ, CEM, Oddělení bakteriálních vzdušných nákaz 1;  SZÚ, CEM, Oddělení bakteriálních vzdušných nákaz, NRL pro hemofilové nákazy 2
Published in: Epidemiol. Mikrobiol. Imunol. 71, 2022, č. 2, s. 67-77
Category: Original Papers

Overview

Aim: To assess the trends and changes in the incidence of invasive disease caused by Haemophilus influenzae in the Czech Republic (CR) between 1999 and 2020 with regard to the introduction of childhood vaccination against H. influenzae serotype b (Hib) in 2001. Characterization of strains by multilocus sequence typing (MLST) and search for correlations between serotypes, sequence types, and patient groups or clinical manifestations of the disease.

Material and methods: A total of 623 invasive H. influenzae strains from surveillance of invasive Haemophilus disease in the Czech Republic were analysed. All strains were biotyped based on phenotypic characteristics and serotyped using slide agglutination with specific a-f antisera. Three hundred and eighty-three strains from the collection of the National Reference Laboratory for Haemophilus Infections (NRL HEM) originating from surveillance in the CR were analysed by MLST and assigned to sequence types (ST). For analyses, the dataset was supplemented with five strains from the PubMLST database of serotypes rarely or not at all found in the CR. Similarity calculations based on MLST and strain (serotype, biotype, ST) and patient (diagnosis, sex, age) data were performed in BioNumerics 7.6.

Results: After the introduction of Hib vaccination in 2001, a dramatic decline of more than 90% was observed in invasive Hib disease over the following years. Between 1999 and 2020, a total of 623 cases of invasive disease caused by H. influenzae were recorded in the CR, with about 20 cases reported annually in recent years. At present, the dominant agents causing Haemophilus invasive disease in the CR are non-enveloped strains (HiNT) followed by strains of Hif and Hie serotypes. The most common manifestation of Haemophilus invasive disease in the pre-vaccination era was meningitis, while now it is sepsis. Sequence types of 383 strains from the NRL HEM collection originating from surveillance in the CR were analysed. The results showed high clonality of the encapsulated strains and diversity of HiNT strains, which is consistent with the results of others. Strain similarity analysis showed no demonstrable relationships between patient age or clinical manifestation and serotype and ST.

Conclusion: In invasive Haemophilus disease, there has been a dramatic change as a result of Hib vaccination after 2001, with a reduction of cases caused by Hib from tens to units annually. In the last decade, the situation in the CR has been stable with no significant changes in the number of cases or in the representation of causative serotypes and is in line with the reports from other EU countries. In order to monitor further developments, it is desirable that the NRL HEM should continue the surveillance of invasive disease caused by H. influenzae, including molecular biological characteristics of strains. MLST allows the characterisation of strains based on allelic variants of selected housekeeping genes, but it does not allow the association of specific H. influenzae sequence types with patient age, sex or clinical manifestations. In the future, whole genome sequencing could be a useful tool for determining the correlation between the disease and specific strains.

Keywords:

surveillance – MLST – Epidemiology – Haemophilus influenzae – invasive disease – serotyping – biotyping


Sources

1. Růžička F. Rod Haemophilus. In: Votava M, et al. Lékařská mikrobiologie speciální. Brno: NEPTUN, 2003. ISBN 80-902896-6-5.

2. Ryan KJ, Ray CG, et al. Sherris Medical Microbiology, Fifth Edition. USA, McGraw-Hill Companies, 2010. ISBN 978-0-07-160402-4.

3. European Centre for Disease Prevention and Control. Haemophilus influenzae. In: ECDC. Annual epidemiological report for 2018. Stockholm: ECDC, 2020. Dostupný na www:< https:// www.ecdc.europa.eu/en/publications-data/haemophilus-influenzae- annual-epidemiological-report-2018>.

4. Zákon č. 258/2000 Sb., o ochraně veřejného zdraví, ve znění pozdějších předpisů, § 75a [online]. 2015-09-16 [cit. 2020-10-18]. Dostupné na www: <https://www.zakony.cz/zakon-SB2015267>.

5. Vyhláška č. 473/2008 Sb., o systému epidemiologické bdělosti pro vybrané infekce, ve znění pozdějších předpisů [online]. 2008-12-30 [cit. 2020-10-18]. Dostupné na www: <https://www.zakonyprolidi.cz/cs/2008-473>.

6. Meats E, Feil EJ, Stringer S, et al. Characterization of encapsulated and noncapsulated Haemophilus influenzae and determination of phylogenetic relationships by multilocus sequence typing. Journal of Clinical Microbiology, 2003;41(4):1623–1636.

7. Jolley KA, Bray JE, Maien MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Research, 2018, 3(124). Dostupné na www: <https://wellcomeopenresearch.org/articles/3-124/v1>.

8. Berndsen MR, Erlendsdóttir H, Gottfredsson M. Evolving epidemiology of invasive Haemophilus infections in the post-vaccination era: results from a long-term population-based study. Clinical Microbiology and Infection, 2012;18(9):918–923.

9. Vyhláška č. 355/2017 Sb. kterou se mění vyhláška č. 537/2006 Sb., o očkování proti infekčním nemocem, ve znění pozdějších předpisů [online]. 2017-10-30 [cit. 2020-10-18]. Dostupné na www: <https://www.zakonyprolidi.cz/cs/2017-355>.

10. World Health Organization, The Global Health Observatory. Hib (Hib3) immunization coverage among one-year-olds (%) [online]. 2020-07-20 [cit. 2020-11-30]. Dostupné na www: <https://www.who.int/data/gho/data/indicators/indicator-details/GHO/hib-(hib3)-immunization-coverage-among-1-year-olds-(-)>.

11. World Health Organization, Regional Office for Europe. Routine immunization summary, WHO European Region, 2019 – Data as of 18 August 2020 [online]. [cit. 2020-11-30]. Dostupné na www: <https://www.euro.who.int/en/health-topics/disease-prevention/vaccines-and-immunization/data-and-statistics/routine-immunization-regional-and-country-profiles/data-for-2019/routine-immunization-summary,-who-european-region,-2019-data-as-of-18-august-2020>.

12. Pedersen TI, Howitz M, Østergaard C. Clinical characteristics of Haemophilus influenzae meningitis in Denmark in the post-vaccination era. Clinical Microbiology and Infection, 2010;16(5):439–446.

13. Giufrè M, Cardines R, Caporali MG, et al. Ten years of Hib vaccination in Italy: Prevalence of non-encapsulated Haemophilus influenzae among invasive isolates and the possible impact on antibiotic resistence. Vaccine, 2011;29(22):3857–3862.

14. Bajanca-Lavado MP, Simões AS, Betencourt CR, et al. Characteristics of Haemophilus influenzae invasive isolates from Portugal following routine childhood vaccination against H. influenzae serotype b (2002–2010). European Journal of Clinical Microbiology and Infectious Diseases, 2014;33(4):603–610.

15. Eton V, Schroeter A, Kelly L, et al. Epidemiology of invasive pneumococcal and Haemophilus influenzae diseases in Northwestern Ontario, Canada, 2010–2015. International Journal of Infectious Diseases, 2017;65:27–33.

16. Fitzwater SP, Ramachandran P, Kahn GD, et al. Impact of the introduction of the Haemophilus influenzae type b conjugate vaccine in an urban setting in southern India. Vaccine, 2019;37(12):1608–1613.

17. Lebedová V, Šebestová H, Musílek M, et al. Závažná onemocnění způsobená Haemophilus influenzae v České republice v období 2009–2020. Zprávy Centra epidemiologie a mikrobiologie (SZÚ Praha), 2021;30(5):149–156.

18. Pinto M, González-Díaz A, Machado MP, et al. Insights into the population structure and pan-genome of Haemophilus influenzae. Infection, Genetics and Evolution, 2019;67:126–135.

19. Bender JM, Cox CM, Mottice S, et al. Invasive Haemophilus influenzae disease in Utah children: an 11-year population-based study in the era of conjugate vaccine. Clinical Infectious Diseases, 2010;50:e41–e46. Dostupné na www: <https://pubmed.ncbi.nlm.nih.gov/20178414/>.

20. Shuel M, Hoang L, Law DKS, et al. Invasive Haemophilus influenzae in British Columbia: non-Hib and non-typeable strains causing disease in children and adults. International Journal of Infectious Diseases, 2011;15:e167–e173. Dostupné na www: <https://pubmed.ncbi.nlm.nih.gov/21134777/>.

21. Wong SM, Akerley BJ. Environmental and genetic regulation of the phosphorylcholine epitope of Haemophilus influenzae lipooligosaccharide. Molecular Microbiology, 2005;55(3):724–738.

22. Satola SW, Schirmer PL, Farley MM. Complete sequence of the cap locus of Haemophilus influenzae serotype b and nonencapsulated b capsule-negative variants. Infection and Immunity, 2003;71(6):3639–3644.

23. Cerquetti M, Giufrè M. Why we need a vaccine for nontypeable Haemophilus influenzae. Human Vaccines and Immunotherapeutics, 2016;12(9):2357–2361.

24. LaCross NC, Marrs CF, Gilsdorf JR. Population structure in nontypeable Haemophilus influenzae. Infection, Genetics and Evolution, 2013;14:125–136.

25. Erwin AL, Sandstedt SA, Bonthuis PJ, et al. Analysis of genetic relatedness of Haemophilus influenzae isolates by multilocus sequence typing. Journal of Bacteriology, 2008;190(4):1473–1483.

26. De Chiara M, Hood D, Muzzi A, et al. Genome sequencing of disease and carriage isolates of nontypeable Haemophilus influenzae identifies discrete population structure. Proceedings of the National Academy of Sciences, 2014;111(14):5439–5444.

27. Brueggemann AB, Jansen van Rensburg MJ, Shaw D, et al. Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: a prospective analysis of surveillance data. The Lancet Digital Health, 2021;3(6):E360–E370.

Labels
Hygiene and epidemiology Medical virology Clinical microbiology
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#