#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Diabetic cardiomyopathy and heart failure


Authors: Ján Murín 1;  Jozef Bulas 1;  Martin Wawruch 2
Authors place of work: I. interná klinika LF UK a UNB, Nemocnica Staré Mesto, Bratislava 1;  Ústav farmakológie a klinickej farmakológie LF UK v Bratislave 2
Published in the journal: Forum Diab 2019; 8(3): 165-169
Category: Review Article

Summary

Diabetes mellitus type 2 is a strong cardiovascular risk factor and in the development of heart failure three pathological factors or diseases play important role: ischemic heart disease, cardiomyopathy and autonomic cardiac neuropathy. Analysis of the development of diabetic cardiomyopathy is presented in this article: epidemiology of this disease, pathological mechanisms of this disease development (hyperglycemia, oxidative stress, vascular inflammation, myocardial metabolism malfunction, cardiac remodeling, perfusion abnormalities),screening of this cardiomyopathy (imaging modalities, biomarkers, exclusion of presence of myocardial ischemia) and also treatment possibilities (treatment of diabetes and of risk factors, adjustment of metabolism, and improvement of myocardial function). When we understand the development of diabetic cardiomyopathy, then we can intervene with this problems in prevention and in the treatment.

Keywords:

diabetes mellitus type 2 – diabetic cardiomyopathy – heart failure – treatment of diabetic cardiomyopathy


Zdroje
  1. Pappachan JM, Varughese GI, Sriraman R et al. Diabetic cardiomyopathy: pathophysiology, diagnostic evaluation and management. World J Diabetes 2013; 4)5): 177–189. Dostupné z DOI: <http://doi: 10.4239/wjd.v4.i5.177>.

  2. Kannel WB, Hjortland M, Castgelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 1974; 34(1): 29–34. Dostupné z DOI: <http://doi: 10.1016/0002–9149(74)90089–7>.

  3. Nichols GA, Gullion CM, Koro CE et al. The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care 2004; 27(8): 1879–1884. Dostupné z DOI: <http://doi: 10.2337/diacare.27.8.1879>.

  4. Thrainsdottir IS, Aspelund T, Thorgeirsson G et al. The association between glucose abnormalities and heart failure in the population-based Reykjavik study. Diabetes Care 2005; 28(3): 612–616. Dostupné z DOI: <http://doi: 10.2337/diacare.28.3.612>.

  5. Bahrami H, Bluemke DA, Kronmal R et al. Novel metabolic risk factors for incident heart failure and their relationship with obesity: the MESA (Multi-Ethnic Study of Atherosclerosis) study. J Am Coll Cardiol 2008; 51(18): 1775–1783. Dostupné z DOI: <http://doi: 10.1016/j.jacc.2007.12.048>.

  6. Wong C, Marwick TH. Obesity cardiomyopathy: pathogenesis and pathophysiology. Nat Clin Pract Cardiovasc Med 2007; 4(8): 436–443. Dostupné z DOI: <http://doi: 10.1038/ncpcardio0943>.

  7. Matsue Y, Suzuki M, Nakamura R et al. Prevalence and prognostic implications of pre-diabetic state in patients with heart failure. Circ J 2011; 75(12): 2833–2839. Dostupné z DOI: <http://doi: 10.1253/circj.cj-11–0754>.

  8. Gustafsson I, Brendorp B, Seibaek M et al. Influence of diabetes and diabetes-gender interaction on the risk of death in patients hospitalized with congestive heart failure. J Am Coll Cardiol 2004; 43(5): 771–777. Dostupné z DOI: <http://doi: 10.1016/j.jacc.2003.11.024>.

  9. MacDonald MR, Petrie MC, Varyani F et al. Impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure: an analysis of the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) programme. Eur Heart J 2008; 29(11): 1377–1385. Dostupné z DOI: <http://doi: 10.1093/eurheartj/ehn153>.

  10. Bugger H, Abel ED. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 2014; 57(4): 660–671. Dostupné z DOI: <http://doi: 10.1007/s00125–014–3171–6>.

  11. Huynh K, Bernardo BC, McMullen JR et al. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 2014; 142(3): 375–415. Dostupné z DOI: <http://doi: 10.1016/j.pharmthera.2014.01.003>.

  12. Tate M, Grieve DJ, Ritchie RH. Are targeted therapies for diabetic cardiomyopathy on the horizon? Clin Sci (Lond) 2017; 131(10): 897–915. Dostupné z DOI: <http://doi: 10.1042/CS20160491>.

  13. Iribarren C, Karter AJ, Go AS et al. Glycemic control and heart failure among adult patients with diabetes. Circulation 2001; 103(22): 2668–2673. Dostupné z DOI: <http://doi: 10.1161/01.cir.103.22.2668>.

  14. Qin CX, Sleaby R, Davidoff AJ et al. Insights into the role of maladaptive hexosamine biosynthesis and O-GlcNAcylation in development of diabetic cardiac complications. Pharmacol Res 2017; 116: 45–56. Dostupné z DOI: <http://doi: 10.1016/j.phrs.2016.12.016>.

  15. Slawson C, Copeland RJ, Hart GW. O-GlcNAc signaling: a metabolic link between diabetes and cancer? Trends Biochem Sci 2010; 35(10): 547–555. Dostupné z DOI: <http://doi: 10.1016/j.tibs.2010.04.005>.

  16. Ma J, Banerjee P, Whelan SA et al. Comparative proteomics reveals dysregulated mitochondrial O-GlcNAcylation in diabetic hearts J Proteome Res 2016; 15(7): 2254–2264. Dostupné z DOI: <http://doi: 10.1021/acs.jproteome.6b00250>.

  17. Huynh K, Kiriazis H, Du XJ et al. Coenzyme Q(10) attenuates diastolic dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis in the db/db mouse model of type 2 diabetes. Diabetologia 2012; 55(5): 1544–1553. Dostupné z DOI: <http://doi: 10.1007/s00125–012–2495–3>.

  18. Tate M, Deo M, Cao AH et al. Insulin replacement limits progression of diabetic cardiomyopathy in the low-dose streptozotocin-induced diabetic rat. Diab Vasc Dis Res 2017; 14(5): 423–433. Dostupné z DOI: <http://doi: 10.1177/1479164117710390>.

  19. Di Carli MF, Bianco-Batlles D, Landa ME et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabets mellitus. Circulation 1999; 100(8): 813–819. Dostupné z DOI: <http://doi: 10.1161/01.cir.100.8.813>.

  20. Masuo K, Rakugi H, Ogihar T et al. Cardiovascular and renal complication of type 2 diabetes in obesity, role of sympathetic nerve activity and insulin resistance. Curr Diabets Rev 2010; 6(2): 58–67.

  21. Thomas MC. Type 2 diabetes and heart failure: challenges and solutions. Curr Cardiol Rev 2016; 12(3): 249–255.

  22. Lopaschuk GD, Ussher JR, Folmes CDL et al. Myocardial fatty acid metabolism in health and disease. Physiol Rev 2010; 90(1): 207–258. Dostupné z DOI: <http://doi: 10.1152/physrev.00015.2009>.

  23. Bugger H, Abel ED. Mitochondria in the diabetic heart. Cardiovasc Res 2010; 88(2): 229–240. Dostupné z DOI: <http://doi: 10.1093/cvr/cvq239>.

  24. Battiprolu PK, Hojayev B, Jiang N et al. Metabolic stress-induced activation of Fox01 triggers diabetic cardiomyopathy in mice. J Clin Invest 2012; 122(3): 1109–1118. Dostupné z DOI: <http://doi: 10.1172/JCI60329>.

  25. Lebeche D, Davidoff AJ, Hajjar RJ. Interplay between impaired calcium regulation and insulin signaling abnormalities in diabetic cardiomyopathy. Nat Clin Pract Cardiovasc Med 2008; 5(11): 715–724. Dostupné z DOI: <http://doi: 10.1038/ncpcardio1347>.

  26. Ertunc ME, Hotamisligil GS. Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J Lipid Res 2016; 57(12): 2099–2114. Dostupné z DOI: <http://doi: 10.1194/jlr.R066514>.

  27. Rijzewijk LJ, van der Meer RW, Smit JW et al. Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol 2008; 52(22): 538–549. Dostupné z DOI: <http://doi: 10.1016/j.jacc.2008.07.062>.

  28. Montaigne D, Marechal X, Coisne A et al. Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation 2014; 130(7): 554–564. Dostupné z DOI: <http://doi: 10.1161/CIRCULATIONAHA.113.008476>.

  29. Di Carli MF, Janisse J, Grunberger G et al. Role of chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol 2003; 41(8): 1387–1393. Dostupné z DOI: <http://doi: 10.1016/s0735–1097(03)00166–9>.

  30. Campbell DJ, Somaratne JB, Jenkins AJ et al. Impact of type 2 diabetes and the metabolic syndrome on myocardial structure and microvasculature of men with coronary artery disease. Cardiovas Diabetol 2011; 10: 80–89. Dostupné z DOI: <http://doi: 10.1186/1475–2840–10–80>.

  31. Joshi MS, Berger PJ, Kaye DM et al. Functional relevance of genetic variations of endothelial nitric oxide synthase and vascular endothelial growth factor in diabetic coronary microvessel dysfunction. Clin Exp Pharmacol Physiol 2013; 40(4): 253–261. Dostupné z DOI: <http://doi: 10.1111/1440–1681.12070>.

  32. Mohammed SF, Hussain S, Mirzoyev SA et al. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 2015; 131(3): 550–559. Dostupné z DOI: <http://doi: 10.1161/CIRCULATIONAHA.114.009625>.

  33. Fang ZY, Leano R, Marwick TH. Relationship between longitudinal and radial contractility in subclinical diabetic heart disease. Clin Sci (Lond) 2004; 106(1): 53–60. Dostupné z DOI: <http://doi: 10.1042/CS20030153>.

  34. Ernande L, Bergerot Cl, Girerd N et al. Longitudinal myocardial strain alteration is associated with left ventriculr remodeling in asymptomatic patients with type 2 diabetes mellitus. J Am Soc Echocardiogr 2014; 27(5): 479–488. Dostupné z DOI: <http://doi: 10.1016/j.echo.2014.01.001>.

  35. Boyer JK, Thanigaraj S, Schechtman KB et al. Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. Am J Cardiol 2004; 93(7): 870–875. Dostupné z DOI: <http://doi: 10.1016/j.amjcard.2003.12.026>.

  36. Holland DJ, Marwick TH, Haluska BA et al. Subclinical LV dysfunction and 10-year outcomes in type 2 diabetes mellitus. Heart 2015; 101(13): 1061–1066. Dostupné z DOI: <http://doi: 110.1136/heartjnl-2014–307391>.

  37. Benjamin EJ, Levy D, Vaziri SM et al. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA 1994; 271(11): 840–844.

  38. van Heerebeek L, Hamdani N, Handoko ML et al. Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 2008; 117(1): 43–51. Dostupné z DOI: <http://doi: 10.1161/CIRCULATIONAHA.107.728550>.

  39. Wong TC, Piehler KM, Kang IA et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J 2014; 35(10): 657–664. Dostupné z DOI: <http://doi: 10.1093/eurheartj/eht193>.

  40. Abhayaratna WP, Marwick TH, Becker NG et al. Population-based detection of systolic and diastolic dysfunction with amino-terminal pro-B-type natriuretic peptide. Am Heart J 2006; 152(5): 941–948. Dostupné z DOI: <http://doi: 10.1016/j.ahj.2006.05.007>.

  41. Albers AR, Krichavsky MZ, Balady GJ. Stress testing in patients with diabetes mellitus: diagnostic and prognostic value. Circulation 2006; 113(4): 583–592. Dostupné z DOI: <http://doi: 10.1161/CIRCULATIONAHA.105.584524>.

  42. Gawlowski T, Stratmann B, Stork I et al. Heat shock protein 27 modification is increased in the human diabetic failing heart. Horm Metab Res 2009; 41(8): 594–599. Dostupné z DOI: <http://doi: 10.1055/s-0029–1216374>.

  43. Dempsey PC, Owen N, Yates TE et al. Sitting less and moving more: improved glycaemic control for type 2 diabetes prevention and management. Curr Diab Rep 2016; 16(11): 114–122. Dostupné z DOI: <http://doi: 10.1007/s11892–016–0797–4>.

  44. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular outcomes in type 1 diabetes: the DCCT/EDIC study 30-year follow-up. Diabetes Care 2016; 39(5): 686–693. Dostupné z DOI: <http://doi: 10.2337/dc15–1990>.

  45. Zinman B, Wanner C, Lachim JM et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373(22): 2117–2128. Dostupné z DOI: <http://doi: 10.1056/NEJMoa1504720>.

  46. Kosiborod M, Cavender MA, Fu AZ et al. [CVD-REAL Investigators and Study Group]. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL Study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors). Circulation 2017; 136(3): 249–259. Dostupné z DOI: <http://doi: 10.1161/CIRCULATIONAHA.117.029190>.

  47. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010; 107(9): 1058–1070. Dostupné z DOI: <http://doi: 10.1161/CIRCRESAHA.110.223545>.

  48. Mortensen SA, Rosenfeldt F, Mumar A et al. [Q-SYMBIO Study Investigators]. The effect of coenzyme Q(10) on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. J Am Col Cardiol HF 2014; 2(6): 641–649. Dostupné z DOI: <http://doi: 10.1016/j.jchf.2014.06.008>.

  49. Olshansky B, Sabbah HN, Hauptman PJ et al. Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. Circulation 2008; 118(8): 863–871. Dostupné z DOI: <http://doi: 10.1161/CIRCULATIONAHA.107.760405>.

Štítky
Diabetology Endocrinology Internal medicine
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#