Prognostic factors for the success of extracorporeal shock wave lithotripsy
Authors:
K. Fógel; T. Hanuš; K. Novák
Authors‘ workplace:
Přednosta: prof. MUDr. Tomáš Hanuš, DrSc.
; Univerzity Karlovy, Praha
; Urologická klinika
; Všeobecná fakultní nemocnice a 1. lékařská fakulta
Published in:
Prakt. Lék. 2009; 89(12): 663-667
Category:
Reviews
Overview
Since its invention in the 1980s and subsequent introduction into clinical practice, Extracorporeal Shock Wave Lithotripsy (ESWL) has dramatically changed the previous, rather invasive, approach to the treatment of urinary stones. Up to 90 % of patients with kidney stones now undergo ESWL. There has been a lot of data published on this topic over the past twenty-nine years. From this amount of evidence, we can identify the specific prognostic factors, which can be used to predict the clinical outcome of the shock wave lithotripsy, thus providing for the better selection of patients. Two main groups of factors are thought to have the strongest prediction value: patient-dependent and the machine and operator/dependent factors. Patient factors include: location, size, stone burden, computerized tomography (CT) density and chemical composition, stone-to-skin distance, body mass index (BMI), presence of a JJ-stent, age, congenital or acquired urinary tract anomalies and use of medical expulsion drugs. Machine-dependent factors are: shock wave frequency, type of lithotripter, bubbleless coupling, type of anaesthesia and operator experience.
Key words:
extracorporeal shock wave lithotripsy, prognostic factors, urinary stones.
Sources
1. Miller, N.L., Lingeman, J.E. Management of kidney stones. BMJ 2007, 334, p. 468-472.
2. Tolley, D.A. Consensus of lithotriptor terminology. World J. Urol. 1993, 11, p. 37-42.
3. Preminger, G.M., Tiselius, H.G., Assimos, D.G. et al. 2007 Guideline for the management of ureteral calculi. Eur. Urol. 2007, 52, p. 1610-1631.
4. Chen, R.N., Streem, S.B. Extracorporeal shock wave lithotripsy for lower pole calculi: long-term radiographic and clinical outcome. J. Urol. 1996, 156, p. 1572-1575.
5. Rassweiler, J.J., Renner, C., Chaussy, C., Thuroff, S. Treatment of renal stones by extracorporeal shockwave lithotripsy: an update. Eur. Urol. 2001, 39, p. 187-199.
6. Al-Ansari, A., As-Sadiq, K., Al-Said, S. et al. Prognostic factors of success of extracorporeal shock wave lithotripsy (ESWL) in the treatment of renal stones. Int. Urol. Nephrol. 2006, 38, p. 63-67.
7. Denstedt, J.D., Clayman, R., Preminger, G. Efficiency quotient as a means of comparing lithotripters. (Abstract). J. Endourol. (Suppl). 1990, 100.
8. Rassweiler, J., Tailly, G., Chaussy, C. Progress in lithotriptor technology. EAU Update Series 2005, 3, p. 17-36.
9. Sampaio, F.J., Aragao, A.H. Inferior pole collecting system anatomy: its probable role in extracorporeal shock wave lithotripsy. J. Urol. 1992, 147, p. 322-324.
10. Elbahnasy, A.M., Shalhav, A.L., Hoenig, D.M. et al. Lower caliceal stone clearance after shock wave lithotripsy or ureteroscopy: the impact of lower pole radiographic anatomy. J. Urol. 1998, 159, p. 676-682.
11. Danuser, H., Muller, R., Descoeudres, B. et al. Extracorporeal shock wave lithotripsy of lower calyx calculi: how much is treatment outcome influenced by the anatomy of the collecting system? Eur. Urol. 2007, 52, p. 539-546.
12. Chaussy, C., Bergsdorf, T. Extracorporeal shockwave lithotripsy for lower pole calculi smaller than one centimeter. Indian. J. Urol. 2008, 24, p. 517-520.
13. Albala, D.M., Assimos, D.G., Clayman, R.V. et al. Lower pole I: a prospective randomized trial of extracorporeal shock wave lithotripsy and percutaneous nephrostolithotomy for lower pole nephrolithiasis-initial results. J. Urol. 2001, 166, p. 2072-2080.
14. Pearle, M.S., Lingeman, J.E., Leveillee, R. et al. Prospective randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. J. Urol. 2008, 179, p. S69-S73.
15. Abe, T., Akakura, K., Kawaguchi, M. et al. Outcomes of shockwave lithotripsy for upper urinary-tract stones: a large-scale study at a single institution. J. Endourol. 2005, 19, p. 768-773.
16. Pearle, M., Clayman, R. Outcomes and selection of surgical therapies of stones in the kidney and ureter. In: Coe F, Favus M, Paky C, Parks J, Preminger G eds, Kidney Stones: Medical and Surgical Management. Philadelphia: Lippincott-Raven; 1996.
17. Pacik, D., Hanak, T., Kumstat, P. et al. Effectiveness of SWL for lower-pole caliceal nephrolithiasis: evaluation of 452 cases. J. Endourol. 1997, 11, p. 305-307.
18. Tiselius, H.G., Ackermann, D., Alken, P. et al. Guidelines on urolithiasis. Eur. Urol. 2001, 40, p. 362-371.
19. Sheir, K.Z., Mansour, O., Madbouly, K. et al. Determination of the chemical composition of urinary calculi by noncontrast spiral computerized tomography. Urol. Res. 2005, 33, p. 99-104.
20. Garcia Marchinena, P., Billordo Peres, N., Liyo, J. et al. CT SCAN as a predictor of composition and fragility of urinary lithiasis treated with extracorporeal shock wave lithotripsy in vitro. Arch. Esp. Urol. 2009, 62, p. 215-222, discussion p. 222.
21. Grosjean, R., Sauer, B., Guerra, R.M. et al. Characterization of human renal stones with MDCT: advantage of dual energy and limitations due to respiratory motion. Am. J. Roentgenol. 2008, 190, p. 720-728.
22. Dretler, S.P. Stone fragility—a new therapeutic distinction. J. Urol. 1988, 139, p. 1124-1127.
23. Ansari, M.S., Gupta, N.P., Seth, A. et al. Stone fragility: its therapeutic implications in shock wave lithotripsy of upper urinary tract stones. Int. Urol. Nephrol. 2003, 35, p. 387-392.
24. Joseph, P., Mandal, A.K., Singh, S.K. et al. Computerized tomography attenuation value of renal calculus: can it predict successful fragmentation of the calculus by extracorporeal shock wave lithotripsy? A preliminary study. J. Urol. 2002, 167, p. 1968-1971.
25. Perks, A.E., Schuler, T.D., Lee, J. et al. Stone attenuation and skin-to-stone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy. Urology 2008, 72, p. 765-769.
26. El-Nahas, A.R., El-Assmy, A.M., Mansour, O., Sheir, K.Z. A prospective multivariate analysis of factors predicting stone disintegration by extracorporeal shock wave lithotripsy: the value of high-resolution noncontrast computed tomography. Eur. Urol. 2007, 51, p. 1688-1693, discussion, p. 1693-1684.
27. Argyropoulos, A.N., Tolley, D.A. Ureteric stents compromise stone clearance after shockwave lithotripsy for ureteric stones: results of a matched-pair analysis. BJU Int. 2009, 103, p. 76-80.
28. Musa, A.A. Use of double-J stents prior to extracorporeal shock wave lithotripsy is not beneficial: results of a prospective randomized study. Int. Urol. Nephrol. 2008, 40, p. 19-22.
29. Petřík, A., Alterová, E., Fiala, M. a kol. Vliv stenting na dezintegraci ureterolitiázy in vivo. Čes. Urol. 2006, 1, s. 59-63.
30. Ng, C.F., Wong, A., Tolley, D. Is extracorporeal shock wave lithotripsy the preferred treatment option for elderly patients with urinary stone? A multivariate analysis of the effect of patient age on treatment outcome. BJU Int. 2007, 100, p. 392-395.
31. Symons, S.J., Ramachandran, A., Kurien, A. et al. Urolithiasis in the horseshoe kidney: a single-centre experience. BJU Int. 2008, 102, p. 1676-1680.
32. Al-Tawheed, A.R., Al-Awadi, K.A., Kehinde, E.O. et al. Treatment of calculi in kidneys with congenital anomalies: an assessment of the efficacy of lithotripsy. Urol. Res. 2006, 34, p. 291-298.
33. D’A Honey, R.J., Luymes, J., Weir, M.J. et al. Mechanical percussion inversion can result in relocation of lower pole stone fragments after shock wave lithotripsy. Urology 2000, 55, p. 204-206.
34. Cervenakov, I., Fillo, J., Mardiak, J. et al. Speedy elimination of ureterolithiasis in lower part of ureters with the alpha 1-blocker-Tamsulosin. Int. Urol. Nephrol. 2002, 34, p. 25-29.
35. Wang, C.J., Huang, S.W., Chang, C.H. Adjunctive medical therapy with an alpha-1A-specific blocker after shock wave lithotripsy of lower ureteral stones. Urol. Int. 2009, 82, p. 166-169.
36. Semins, M.J., Trock, B.J., Matlaga, B.R. The effect of shock wave rate on the outcome of shock wave lithotripsy: a meta-analysis. J. Urol. 2008, 179, p. 194-197, discussion p. 197.
37. Pishchalnikov, Y.A., McAteer, J.A., Williams, J.C. Jr. et al. Why stones break better at slow shockwave rates than at fast rates: in vitro study with a research electrohydraulic lithotripter. J. Endourol. 2006, 20, p. 537-541.
38. Teichman, J.M., Portis, A.J., Cecconi, P.P. et al. In vitro comparison of shock wave lithotripsy machines. J. Urol. 2000, 164, p. 1259-1264.
39. Evan, A.P., Lynn, W.R. Extracorporeal Shock Wave Lithotripsy: Complications. In: Smith AD ed, Smith`s Textbook of Endourology. Hamilton - London: BC Decker Inc.; 2006, p. 353-362.
40. Chuong, C.J., Zhong, P., Preminger, G.M. A comparison of stone damage caused by different modes of shock wave generation. J. Urol. 1992, 148, p. 200-205.
41. Cleveland, R.O., Anglade, R., Babayan, R.K. Effect of stone motion on in vitro comminution efficiency of Storz Modulith SLX. J. Endourol. 2004, 18, p. 629-633.
42. Eisenmenger, W., Du, X.X., Tang, C. et al. The first clinical results of “wide-focus and low-pressure” ESWL. Ultrasound. Med. Biol. 2002, 28, p. 769-774.
43. Sheir, K.Z., Elhalwagy, S.M., Abo-Elghar, M.E. et al. Evaluation of a synchronous twin-pulse technique for shock wave lithotripsy: a prospective randomized study of effectiveness and safety in comparison to standard single-pulse technique. BJU Int. 2008, 101, p. 1420-1426.
44. Pishchalnikov, Y.A., Neucks, J.S., VonDerHaar, R.J. et al. Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shock wave energy. J. Urol. 2006, 176, p. 2706-2710.
45. Sorensen, C., Chandhoke, P., Moore, M. et al. Comparison of intravenous sedation versus general anesthesia on the efficacy of the Doli 50 lithotriptor. J. Urol. 2002, 168, p. 35-37.
46. Logarakis, N., Jewett, M., Luymes, J., Honey, J. Variation in clinical outcome following shock wave lithotripsy. J. Urol. 2000, 163, p. 721-725.
Labels
General practitioner for children and adolescents General practitioner for adultsArticle was published in
General Practitioner
2009 Issue 12
- Memantine Eases Daily Life for Patients and Caregivers
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Most read in this issue
- Venomous fish – a risk of warm seas
- New diagnostic approaches to subclinical adrenal insufficiency
- Complicated acute rhinosinusitis – a case report
- Possibilities and necessity of nasal patency evaluation in occupational medicine