Calendar age and fitness age
Authors:
J. Novák
Authors place of work:
Lékařská fakulta v Plzni, Ústav tělovýchovného lékařství Vedoucí: doc. MUDr. Jitka Švíglerová, Ph. D.
; Univerzita Karlova v Praze
Published in the journal:
Prakt. Lék. 2019; 99(3): 95-101
Category:
Editorial
Summary
Aging increases the risk of cardiovascular diseases (CVD) and other main non communicable diseases (NCD) (according to WHO – cancer, chronic respiratory diseases and diabetes). It also affects the function and structure of arteries. In healthy sedentary adults, aging is associated with increased stiffness of large elastic arteries and impaired vascular endothelial function. Compared with their sedentary peers, adults who regularly perform aerobic exercise demonstrate smaller or no age-associated increases in large elastic artery stiffness and reductions in vascular endothelial function. Habitual exercise can improve functional capacity of the cardiovascular system, cardiac function and metabolism. Direct measurements of the peak oxygen uptake (VO2peak) is accepted as the most valid index of aerobic fitness and cardiorespiratory capacity in both health and disease. Even small improvements in physical fitness are associated with a significant improvement of quality of life, decreased NCD prevalence and attenuatiopn of the relative risk of premature death from any reason. So called „fitness age“ can significantly differ from calendar age, being by several dacades lower in exercised aged subjects. To estimate cardiorespiratory fitness (CRF) a simple Nonexercise model of CRF and fitness age prediction can be used. Health care professionals should take a greater responsibility to influence patients and the public to become more physically active.
Keywords:
Physical activity – sarcopenia – endothelial dysfunction – cardiorespitaroty capacity – VO2max – fitness age
Zdroje
1. Aspenes ST, Nauman J, Nilsen T, et al. Physical activity as a long-term predictor of peak oxygen uptake: The HUNT Study. Med Sci Sports Exerc 2011; 43(9): 1675–1679.
2. Arbab-Zadeh A, Dijk E, Prasat A, Fu Q, et al. Effect of aging and physical activity on left ventricular compliance. Circulation 2004; 110(13): 1799–1805.
3. Beránková K. Fit se cítí jen tři procenta! Blesk 16. 11. 2018: s. 8.
4. Bertrais S, Bweyeme-Ondoua J-P, Czernichow S, et al. Sedentary behaviors, physical activity, and metabolic syndrome in middle aged French subjects. Obes Res 2005; 13: 936–944.
5. Blair SN, Kohl HW, Paffenbarger RS Jr, et al. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA 1989; 262: 2395–2401.
6. Blair SN, Kampert JB, Kohl HW, et al. Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA 1996; 276: 205–210.
7. Buskirk ER, Hodgson JL. Age and aerobic power: the rate of change in men and women. Fed Proc 1987; 46: 1824–1829.
8. Carrick-Ranson JL, Hastings PS, Bhella PS, et al. The effect of lifelong exercise dose on cardiovascular function during exercise. J Appl Physiol 1985; 116(7): 736–745.
9. Celermajer DS, Sorensen KE, Spiegelhalter DJ, et al. Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J Am Coll Cardiol 1994; 24(2): 471–476.
10. Comi P, Chiaramonte R, Maier JA. Senescence-dependent regulation of type 1 plasminogen activator inhibitor in human vascular endothelial cells. Exp Cell Res 1995; 219(1): 304–308.
11. Csiszar A, Wang M, Lakatta EG, Ungvari Z. Inflammation and endothelial dysfunction during aging: role of NF-kappaB. J Appl Physiol 2008; 105(4): 1333–1341.
12. Dai DF, Rabinovitch PS, Ungvari Z. Mitochondria and cardiovascular aging. Circ Res 2012; 110(8): 1109–1124.
13. DeVan AE, Eskurza I, Pierce, GL, et al. Regular aerobic exercise protects against impaired fasting plasma glucose-associated vascular endothelial dysfunction with aging. Clin Sci (Lond) 2013; 124(5): 325–331.
14. Dimmeler S, Vasa-Nicotera M. Aging of progenitor cells: limitation for regenerative capacity? J Am Coll Cardiol 2003; 42: 2081–2082.
15. Dimmeler S, Zeiher AM. Vascular repair by circulating endothelial progenitor cells: the missing link in atherosclerosis? J Mol Med 2004; 82: 671–677.
16. Downes TR, Nomeir AM, Smith KM, et al. Mechanism of altered pattern of left ventricular filling with aging in subjects without cardiac disease. Am J Cardiol 1989; 64(8): 523–527.
17. Dzau VJ, Gnecchi M, Pachori AS, et al. Therapeutic potential of endothelial progenitor cells in cardiovascular diseases. Hypertension 2005; 46: 7–18.
18. Donato AJ, Eskurza I, Silver AE, et al. Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-kappaB. Circ Res 2007; 100: 1659–1666.
19. Ehsani AA, Spina RJ, Peterson LR, et al. Attenuation of cardiovascular adaptations to exercise in frail octogenarians. J Appl Physiol 2003; 95(5): 1781–1788.
20. Feletou M, Vanhoutte PM. Endothelium-dependent hyperpolarizations: past beliefs and present facts. Ann Med 2007; 39: 495–516.
21. Fleg JL, O’Connor F, Gerstenblith G, et al. Impact of age on the cardiovascular response to dynamic upright exercise in healthy men and women. J Appl Physiol 2009; 78(3): 236–245.
22. Gibbs CL. Cardiac energetics. Physiol Rev 1978; 58: 174–254.
23. Gavorník P. Kalendárny vek a biologicko-funkčný organovaskulárny vek človeka. Prakt. Lék. 2018; 98(6): 275–276.
24. Goldspink DF, Georgie KP, Chantler PD, et al. A study of presbycardia, with gender differences favoring ageing women. Int J Cardiol 2009; 137(3): 236–245.
25. Govindarajan G, Whaley-Connel Al, Mugo M, et al. The cardiometabolic syndrome as a cardiovascular risk factor. Am J Med Sci 2005; 330(6): 311–318.
26. Heiss C, Keymel S, Niesler U, et al. Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol 2005; 45: 1441–1448.
27. Heller J. Zátěžová funkční diagnostika ve sportu. Východiska, aplikace a interpretace. Praha: Karolinum 2018.
28. Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003; 348: 593–600.
29. Hoetzer GL, MacEneaney OJ, Irmiger HM, et al. Gender differences in circulating endothelial progenitor cell colony-forming capacity and migratory activity in middle-aged adults. Am J Cardiol 2007; 99: 46–48.
30. Hoetzer GL, Van Guilder GP, Irmiger HM, et al. Aging, exercise, and endothelial progenitor cell clonogenic and migratory capacity in men. J Appl Physiol 2007; 102: 847–852.
31. Hotta K, Behnke BJ, Arjmandi B, et al. Daily muscle stretching enhances blood flow, endothelial function, capillarity, vascular volume and connectivity in aged skeletal muscle. J Physiol 2018; 596(10): 1903–1917.
32. Hradec J. Diastolické srdeční selhání. Remedia 2004 [online]. Dostupné z: http://www.remedia.cz/Archiv-rocniku/Rocnik-2004/2-2004/Diastolicke-srdecni-selhani/e-9m-9E-c1.magarticle.aspx [cit. 2019-03-03].
33. Hu FB, Willett WC, Li T, et al. Adiposity as compared with physical activity in predicting mortality among women. N Engl J Med 2004; 351: 2694–2703.
34. Cheng S, Fernandes VRS, Bluemke DA, et al. Age-related left ventricular remodeling and associated risk for cardiovascular outcomes. The multi-ethnic study of atherosclerosis. Circ Cardiovas Imag 2009; 2: 191–198.
35. Jakovljevic DG, Papakonstantinou L, Blaire AM, et al. Effect of physical activity on age-related changes in cardiac function and performance in women. Circ Cardiovasc Imaging 2014; 8(1): pii: e002086.
36. Jakovljevic DG. Physical activity and cardiovascular aging: Physiological and molecular insights. Exper Geront 2018; 109: 67–74.
37. Kalvach Z, Zadák Z, Jirák R, a kol. Geriatrické syndromy a geriatrický pacient. Praha: Grada Publishing 2008.
38. Katzmarzyk PT, Church TS, Blair SN. Cardiorespiratory fitness attenuates the effects of the metabolic syndrome on all-cause and cardiovascular disease mortality in men. Arch Intern Med 2004; 164: 1092–1097.
39. Kodama S, Saito K, Tanaka S, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women. JAMA 2009; 301: 2024–2035.
40. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346: 393–403.
41. Laaksonen DE, Lindstrom J, Lakka TA, et al. Physical activity in the prevention of type 2 diabetes: the finnish diabetes prevention study. Diabetes 2005; 54: 158–165.
42. Lakatta EG. Hemodynamic adaptations to stress with advancing age. Acta Med Scand 1986; 711(Suppl): 39–52.
43. Lakatta EG. Changes in cardiovascular function with aging. Eur Heart J 1990; Suppl C: 22–29.
44. Lakatta EG. Cardiovascular reserve capacity in healthy older humans. Aging (Milano) 1994; 6(4): 213–123.
45. Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part I: aging arteries: a “set up” for vascular disease. Circulation 2003; 107(1): 139–146.
46. Laufs U, Werner N, Link A, et al. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 2004; 109: 220–226.
47. Letnes JM, Dalen H, Vesterbekkmo EK, et al. Peak oxygen uptake and incident coronary heart disease in a healthy population: the HUNT Fitness Study. Eur Heart J 2018; doi:10.1093/eurheartj/ehy708
48. Macera CA, Hootman JM, Sniezek JE. Major public health benefits of physical activity. Arthritis Rheum 2003; 49: 122–128.
49. Macera CA, Powell KE. Population attributable risk: implications of physical activity dose. Med Sci Sports Exerc 2001; 33: S635–639.
50. Madarásová M. Endoteliální progenitorové buňky a jejich potenciál v regeneraci tkání. Bakalářská práce. Brno: Přírodovědecká fakulta MU 2013.
51. Masopust J. Patobiochemie buňky. Praha: 2. LF UK 2003.
52. Matz RL, Schott C, Stoclet JC, Andriantsitohaina R. Age-related endothelial dysfunction with respect to nitric oxide, endothelium-derived hyperpolarizing factor and cyclooxygenase products. Physiol Res 2000; 49(1): 11–18.
53. Matz RL, Andriantsitohaina R. Age-related endothelial dysfunction: potential implications for pharmacotherapy. Drugs Aging 2003; 20(7): 527–550.
54. McGuire DK, Levine BD, Williamson JW, et al. A 30-year follow-up of the Dallas bed rest and training study. I. Effect of age on the cardiovascular response to exercise. Circulation 2001; 104: 1350–1357.
55. Murphy C, Kanaganayagam GS, Jiang B, et al. Vascular dysfunction and reduced circulating endothelial progenitor cells in young healthy UK South Asian men. Arterioscler Thromb Vasc Biol 2007; 27: 936–942.
56. Myers J. Physical activity: the missing prescription. Eur J Card Prev Rehab 2005; 112: 85–86.
57. Myers J, Kaykha A, George S, et al. Fitness versus physical activity patterns in predicting mortality in men. Am J Med 2004; 117: 912–918.
58. Nauman J, Tauschek LC, Kaminsky LA, et al. Global fitness levels: findings from a web-based surveillance report. Prog Cardiovasc Dis 2017; 60(1): 78–88.
59. Nes BM, Janszky I, Vatten LJ, et al. Estimating VO2peak from a nonexercise prediction model: the HUNT Study, Norway. Med Sci Sports Exerc 2011; 43(11): 2024–2030.
60. Nes BM, Janszky I, Aspenes S, et al. Exercise patterns and peak oxygen uptake in a healthy population: The HUNT Study. Med Sci Sports Exerc 2012; 44(10): 1881–1889.
61. Nes BM, Vatten LJ, Nauman J, et al. A simple nonexercise model of cardiorespiratory fitness predicts long-term mortality. Med Sci Sports Exerc 2014; 46(6): 1159–1165.
62. Novák J. Kardiorespirační zdatnost sportující populace. Plzeň Lék Sborn 2015; Suppl 85: 7–102.
63. Novák J, Štork M, Zeman V. Spiroergometrie – významná vyšetřovací metoda při hodnocení zdravotního stavu. Plzeň Lék Sborn 2016; Suppl 86: 37–52.
64. Novák J, Votík J, Štork M, Zeman V. Diagnostika kardiorespirační kapacity jako významného biomarkeru zdravotního stavu. Tělesná Kult 2016; 39: 82–93.
65. Novák J, Štork M, Votík J. Doporučená pohybová aktivita: objem nebo intenzita – nebo obojí? In: Život ve zdraví. Soubor příspěvků z mezininárodní konference 7.–8. 9. 2017. Brno: MU 2017; 103–116.
66. Ogawa T, Spina RJ, Martin WH, et al. Effects of aging, sex, and physical training on cardiovascular responses to exercise. Circulation 1992; 86: 494–503.
67. Okamoto T, Min SK, Sakamaki-Sunaga M. Acute effect of interval walking on arterial stiffness in healthy young adults. Int J Sports Med 2018; 39(7): 495–501.
68. Olivetti G, Giordano G, Corridi D, et al. Gender differences and aging: effects in the human heart. J Am Coll Cardiol 1995; 26: 1068–1079.
69. Ozkor MA, Murrow JR, Rahman AM, et al. Endothelium-derived hyperpolarizing factor determines resting and stimulated forearm vasodilator tone in health and in disease. Circulation 2011; 123: 2244–2253.
70. Perseghin G, De Cobelli C, Esposito A, et al. Left ventricular function and energy metabolism in middle-aged men undergoing long-lasting sustained aerobic oxidative training. Heart 2009; 95(8): 630–635.
71. Pierce GL, Donato AJ, LaRocca TJ, et al. Habitually exercising older men do not demonstrate age-associated vascular endothelial oxidative stress. Aging Cell 2011; 10(6): 1032–1037.
72. Pierce GL, Eskurza I, Walker AE, et al. Sex-specific effects of habitual aerobic exercise on brachial artery flow-mediated dilation in middle-aged and older adults. Clin Sci (Lond) 2011; 120(1): 13–23.
73. Redfield MM, Jacobsen SJ, Borlaug BA, et al. Age- and gender-related ventricular-vascular stiffening: a community based study. Circulation 2005, 112: 2254–2262.
74. Reynolds G. Is aerobic exercise the key to succesful aging? New York Times 12. 12. 2018.
75. Reynolds G. How exercise makes us healthier. New York Times 19. 12. 2018.
76. Reynolds G. Stand more, lounge less? Don´t do it to lose weight. New York Times 2. 1. 2019.
77. Ridout SJ, Parker BA, Smithmyer SL, et al. Age and sex influence the balance between maximal cardiac output and peripheral vascular reserve. J Appl Physiol 2010; 108(3): 483–489.
78. Robinson S, Dill DB, Robinson RD, et al. Physiological aging of champion runners. J Appl Physiol 1976; 41: 46–51.
79. Rodeheffer RJ, Gerstenblith G, Becker LC, et al. Exercise cardiac output is maintained with advancing age in healthy human subjects: cardiac dilatation and increased stroke volume compensate for a diminished heart rate. Circulation 1984; 69(2): 203–213.
80. Rodriguez V. Plán pojišťoven: Kdo nekouří a sportuje, ušetří. Deník 28. 11. 2017, s. 5.
81. Rodriguez V. Konec snu o nesmrtelnosti. Deník 9. 12. 2017, s. 5.
82. Seals DR, Hagberg JM, Spina RJ, et al. Enhanced left ventricular performance in endurance trained older men. Circulation 1994; 89: 198–205.
83. Seals DR, DeSouza CA, Donato AJ, Tanaka H. Habitual exercise and arterial aging. J Appl Physiol 2008; 105(4): 1323–1332.
84. Sebastiani P, Perls TT. The genetics of extreme longevity: lessons from the New England Centenarian study. Front Genet 2012; 3: 277.
85. Seliger V., Bartůněk Z. Mean values of various indices of physical fitness in the investigation of Czechoslovak population aged 12–55 years. Praha: ČSTV 1976.
86. Shi Q, Aida K, Vandeberg JL, Wang XL. Passage-dependent changes in baboon endothelial cells - relevance to in vitro aging. DNA Cell Biol 2004; 23(8): 502–509.
87. Short KR, Bigelow ML, Kahl J, et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 2005; 102(15): 5618–1523.
88. Scheubel RJ, Zorn H, Silber RE, et al. Age-dependent depression in circulating endothelial progenitor cells in patients undergoing coronary artery bypass grafting. J Am Coll Cardiol 2003; 42: 2073–2080.
89. Schmidt-Lucke C, Rossig L, Fichtlscherer S, et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 2005; 111: 2981–2987.
90. Schulman SP, Lakatta EG, Fleg JL, et al. Age-related decline in left ventricular filling at rest and exercise. Am J Phys 1992; 263: H1932–H1938.
91. Schulman SP, Fleg JL, Goldberg AP, et al. Continuum of cardiovascular performance across a broad range of fitness levels in healthy older men. Circulation 1996; 94: 359–367.
92. Smith DT, Hoetzer GL, Greiner JJ, et al. Effects of ageing and regular aerobic exercise on endothelial fibrinolytic capacity in humans. J Physiol 2003; 546: 289–298.
93. Spina RJ, Miller TR, Bogenhagen WH, et al. Gender-related differences in left ventricular filling dynamics in older subjects after endurance exercise training. J Gerontol A Biol Sci Med Sci 1996; 51(3): B232–B237.
94. Spina RJ, Ogawa T, Kohrt WM et al. Differences in cardiovascular adaptations to endurance exercise training between older men and women. J Appl Physiol 1993; 75: 849–855.
95. Steiner S, Niessner A, Ziegler S et, al. Endurance training increases the number of endothelial progenitor cells in patients with cardiovascular risk and coronary artery disease. Atherosclerosis 2005; 181: 305–310.
96. Stratton JR, Levy WC, Cerqueira MD, et al. Cardiovascular responses to training in healthy men. Circulation 1994; 89: 1648–1655.
97. Tanaka H, Desouza CA, Jones PP, et al. Greater rate of decline in maximal aerobic capacity with age in physically active vs. sedentary healthy women. J Appl Physiol 1997; 83: 1947–1953.
98. Trappe S, Hayes E, Galpin A, et al. New records in aerobic power among octogenarian lifelong endurance athletes. J Appl Physiol 2013; 114(1): 3–10.
99. Thijssen DH, Vos JB, Verseyden C, et al. Haematopoietic stem cells and endothelial progenitor cells in healthy men: effect of aging and training. Aging Cell 2006; 5: 495–503.
100. Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 344: 1343–1350.
101. Turkbey EB, Jorgensen NW, Johnson WC, et al. Physical activity and physiological cardiac remodelling in a community setting: the Multi-Ethnic Study of Atherosclerosis (MESA). Heart 2010; 96(1): 42–48.
102. Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 2004; 95: 343–353.
103. van den Berg N., Rodríguez-Girondo M, van Dijk IK, et al. Longevity defined as top 10% survivors and beyond is transmitted as a quantitative genetic trait. Nat Commun 2019; 10, Article number: 35 [online]. Dostupné z: https://www.nature.com/articles/s41467-018-07925-0 [cit. 2019-03-04].
104. Veselý J. Fyziologie endotelu. Dysfunkce endotelu, 2012 [online]. Dostupné z: http://pfyziolklin.upol.cz/?p=1456 [cit. 2019-03-04].
105. Vojíř A. Češi jsou nejtlustší v historii. Děti nevyjímaje. Deník 2. 2. 2018, s. 4.
106. Vrablík M, Janotová M, Motyková E, Prusíková M. Endoteliální dysfunkce – první stadium aterosklerózy. Med Praxi 2011, 8(3): 119–122.
107. Vytiska M. Diastolická dysfunkce ve vyšším věku – diagnóza, kvantifikace a prognostický význam u pacientů se zachovanou systolickou funkcí LK. Disertační práce. Brno: MU 2009.
108. Wang M, Zhang J, Juany LQ, et al. Proinflammatory profile within the grossly normal aged human aortic wall. Hypertension 2007; 50(1): 219–227.
109. Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ 2006; 174(6): 801–809.
110. Weiss EP, Spina RJ, Holloszy JO, Ehsani AA. Gender differences in the decline in aerobic capacity and its physiological determinants during the later decades of life. J Appl Physiol 2006; 101(3): 938–944.
111. Wessel TR, Arant CB, Olson MB, et al. Relationship of physical fitness vs body mass index with coronary artery disease and cardiovascular events in women. JAMA 2004; 292: 1179–1187.
112. Williamson DF, Vinicor F, Bowman BA. Primary prevention of type 2 diabetes mellitus by lifestyle intervention: implications for health policy. Ann Intern Med 2004; 140: 951–957.
113. Wilson TM, Tahala H. Meta-analysis of the age-associated decline in maximal aerobic capacity in men: relation to training status. Am J Physiol Heart Circ Physiol 2000; 278(3): H829–H834.
114. Norwegian University of Science and Technology. Cardiac Exercise Research Group (CERG). How fit are you, really? [online]. Dostupné z: https://www.worldfitnesslevel.org/ [cit. 2019-03-04].
Štítky
General practitioner for children and adolescents General practitioner for adultsČlánok vyšiel v časopise
General Practitioner
2019 Číslo 3
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Memantine Eases Daily Life for Patients and Caregivers
- What Effect Can Be Expected from Limosilactobacillus reuteri in Mucositis and Peri-Implantitis?
- Spasmolytic Effect of Metamizole
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
Najčítanejšie v tomto čísle
- Prostate cancer screening in the Czech Republic
- Fournier gangrene – an example of multidisciplinary cooperation
- Typical symptoms – clear disease to think on: primary hyperparathyroidism
- Evaluating the risk of eating disorders in adolescent girls and women with diabetes mellitus – assessment tools