Lipids and the size of lipoprotein particles in newly diagnosed and untreated patients with type 2 diabetes mellitus
Authors:
A. Dukát 1; Ľ. Fábryová 2; S. Oravec 1; P. Sabaka 1; L. Mistríková 3; D. Baláž 1; P. Gavornik 1; Ľ. Gašpar 1
Authors place of work:
II. interná klinika Lekárskej fakulty UK a UN Bratislava, Slovenská republika, prednosta doc. MU Dr. Ľudovít Gašpar, CSc. 2 Diabetologická ambulancia, ambulancia pre metabolické choroby a poruchy výživy Metabol Klinik Bratislava, Slovenská republika, vedú
1; Kardiochirurgická klinika Východoslovenského ústavu srdcových a cievnych chorôb Košice, Slovenská republika, prednostka prof. MU Dr. Mária Frankovičová, PhD.
3
Published in the journal:
Vnitř Lék 2013; 59(6): 450-452
Category:
80th birthday prof. MUDr. Karla Horkého, DrSc., FACP (Hon.)
Summary
Type 2 diabetes mellitus leads to the typical known form of dyslipidaemia among the patients. This dyslipiademia type represents prognostically important type of atherogenic dyslipiadaemia, that significatly increases the risk of atherothrombosis. Estimation of the size of lipoprotein particles with Lipoprint method among newly diagnosed, untreated patients with these patients have not been evaluated yet. Dyslipidaemia among patients with type 2 diabetes mellitus has its course and changes after the treatment. At the beginning i tis characterized by the significant increase of VLDL, large and middle size IDL lipoprotein particles, as well as by lowering of HDL particles. This lipoprotein profile has its own atherogenic potential. The course of the disease later leads to the change of dyslipidaemia, characterized by the increase of LDL levels (small dense particles), triglyceride levels and the persistence of the lower levels of HDL‑cholesterol. Hypolipidemic treatment leads to the significant lowering of cardiovascular risk, however despite treatment with statin or fibrate residual cardiovascular risk remains still very high.
Key words:
diabetes mellitus – dyslipoproteinaemias – residual cardiovascular risk
Zdroje
1. Haffner SM, Mykkanen L, Festa A et al. Insulin resistant prediabetic subjects have more atherogenic risk factors than insulin sensitive prediabetic subjects: implications for preventing coronary heart disease during the prediabetic state. Circulation 2000; 101: 975– 980.
2. Haffner SM, Stern MP, Hazuda HP et al. Cardiovascular risk factors in confirmed prediabetic individuals does the clock for coronary heart disease start ticking before the onset of clinical diabetes? JAMA 1990; 263: 2893– 2898.
3. Krauss R. Lipids and Lipoproteins in Patients With Type 2 Diabetes. Diabetes Care 2004; 27: 1496– 1504.
4. Reaven GM, Chen YD, Jeppesen J et al. Insulin resistance and hyperinsulinemia in individuals with small, dense low density lipoprotein particles. J Clin Invest 1993; 92: 141– 146.
5. Garvey WT, Kwon S, Zheng D et al. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes 2003; 52: 453– 462.
6. Lamarche B, Tchernof A, Moorjani S et al. Small, dense low‑ density lipoprotein particles as a predictor of the risk of ischemic heart disease in men: prospective results from the Quebec Cardiovascular Study. Circulation 1997; 95: 69– 75.
7. Gardner CD, Fortmann SP, Krauss RM. Association of small low‑ density lipoprotein particles with the incidence of coronary artery disease in men and women. JAMA 1996; 276: 875– 881.
8. Campos H, Genest JJ, Blijlevens E et al. Low density lipoprotein particle size and coronary heart disease. Arterioscler Thromb Vasc Biol 1992; 12: 187– 195.
9. Austin MA, Breslow JL, Hennekens CH et al. Low‑ density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 1988; 260: 1917– 1921.
10. Coresh J, Kwiterovich PO, Smith HH et al. Association of plasma triglyceride concentration and LDL particle diameter, density, and chemical composition with premature coronary artery disease in men and women. J Lipid Res 1993; 34: 1687– 1697.
11. Crouse JR, Parks JS, Schey HM et al. Studies of low density lipoprotein molecular weight in human beings with coronary artery disease. J Lipid Res 1985; 26: 566– 574.
12. Austin MA, King MC, Vranizan KM et al. Atherogenic lipoprotein phenotype: a proposed genetic marker for coronary heart disease risk. Circulation 1990; 82: 495– 506.
13. Monhart V. Mikroalbuminurie. Od diabetu ke kardiovaskulárnímu riziku. Vnitř Lék 2011; 57: 293– 298.
14. Teplan V. Adiponectin ve vztahu k ledvinné dysfunkci u nemocných s diabetes mellitus 2. typu. Vnitř Lék 2012; 58: 811– 812.
15. Oravec S, Dukát A, Reinoldová O. Zmeny v lipoproteínovom spektre pri končatinovocievnej ischemickej chorobe. Vnitř Lék 2010; 56: 620– 623.
16. Oravec S, Dukát A, Gavorník P et al. Lipoproteínový profil séra pri novozistenej artériovej hypertenzii. Úloha aterogénnych lipoproteínov v patogenéze ochorenia. Vnitř Lék 2010; 56: 967– 971.
17. Oravec S, Dostal E, Dukát A et al. HDL subfractions analysis: A new laboratory diagnostic assay for patients with cardiovascular diseases and dyslipoproteinemia. Neuroendocrin Lett 2011; 32: 502– 509.
18. Dukát A, Oravec S, Gavorník P et al. Veľkosť LDL lipoproteínových partikúl u pacientov s náhlou mozgovocievnou príhodou. Vnitř Lék 2012; 58: 7– 8.
19. Krauss RM. Atherogenicity of triglyceride‑ rich lipoproteins. Am J Cardiol 1998; 81: 13B–17B.
20. Berneis KK, Krauss RM. Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res 2002; 43: 1363– 1379.
21. Goliasch G, Oravec S, Bleeeberger H et al. Relative importance of different lipid risk factors for the development of myocardial infarction at a very young age (<= 40 years of age). Eur J Clin Invest 2012; 42: 631– 636.
22. McNamara JR, Campos H, Ordovas JM et al.Effect of gender, age, and lipid status on low density lipoprotein subfraction distribution: results from the Framingham Offspring Study. Arteriosclerosis 1987; 7: 483– 490.
23. McNamara JR, Jenner JL, Li Z et al. Change in LDL particle size is associated with change in plasma triglyceride concentration. Arterioscler Thromb Vasc Biol 1992; 12: 1284– 1290.
24. Krauss RM, Williams PT, Lindgren FT et al. Coordinate changes in levels of human serum low and high density lipoprotein subclasses in healthy men. Arteriosclerosis 1988; 8: 155– 162.
25. Hopkins GJ, Barter PJ. Role of triglyceride‑ rich lipoproteins and hepatic lipase in determining the particle size and composition of high density lipoproteins. J Lipid Res 1986; 27: 1265– 1277.
26. Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 1997; 46: 3– 10.
27. Kelley DE, Simoneau JA. Impaired free fatty acid utilization by skeletal muscle in non‑insulin‑dependent diabetes mellitus. J Clin Invest 1994; 94: 2349– 2356.
28. Zambon A, Austin MA, Brown BG et al. Effect of hepatic lipase on LDL in normal men and those with coronary artery disease. Arterioscler Thromb 1993; 13: 147– 153.
29. ESC/ EAS Guidelines for the management of dyslipidaemias. The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Association of Atherosclerosis (EAS). Eur Heart J 2012; 32: 1769– 1818.
Štítky
Diabetology Endocrinology Internal medicineČlánok vyšiel v časopise
Internal Medicine
2013 Číslo 6
Najčítanejšie v tomto čísle
- Differential diagnosis and treatment of hyponatremia
- Impact of pregnancy on pituitary disorders
- Diuretics in monotherapy and in combination with other diuretics and non‑diuretics in the treatment of hypertension
- The environmental estrogen bisphenol A and its effects on the human organism