#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Metabolic acidosis in chronic kidney disease


Authors: Jan Havlín 1,2,3;  Karel Matoušovic 2;  Světlana Vaňková 3;  Otto Schück 2
Authors place of work: III. chirurgická klinika 1. LF UK a FN v Motole, Praha 1;  Interní klinika 2. LF UK a FN v Motole, Praha 2;  B. Braun Avitum, Dialyzační středisko Praha-Nusle 3
Published in the journal: Vnitř Lék 2016; 62(Suppl 6): 30-39
Category: Reviews

Summary

Metabolic acidosis (MAC) is a constant symptom of chronic kidney disease (CKD) in advanced stages. However, its onset and degree do not depend only on the decrease of glomerular filtration but also on tubular functions. Therefore, in patients with predominant tubulointerstitial involvement it may already appear in earlier stages of CKD, usually as MAC with normal anion gap. The progressive decrease of glomerular filtration leads to acid retention that develops in a MAC with an increased anion gap. MAC has many adverse clinical impacts, including the progression of the underlying CKD. The development and degree of MAC in CKD is usually influenced by a combination of several pathophysiological mechanisms and a number of external factors, the most important of them being the diet – the intake and type of proteins – and hydration status. A correct identification of the factors contributing to MAC determines the therapeutic possibilities of its correction. However, optimal serum concentrations of bicarbonate in conservatively treated patients are still subject to debate. Opinions are even more divided on the question of optimal serum concentration of bicarbonate before and after dialysis, in particular due to the risk of post-dialysis meta­bolic alkalosis.

Key words:
dialysate bicarbonate – chronic kidney disease – metabolic acidosis – sodium bicarbonate – sodium-chloride difference


Zdroje

1. Hakim RM, Lazarus JM. Biochemical parameters in chronic renal failure. Am J Kidney Dis 1988; 11(3): 238–247.

2. Widmer B, Gerhardt RE, Harrington JT et al. Serum electrolyte and acid base composition. The influence of graded degrees of chronic renal failure. Arch Intern Med 1979; 139(10): 1099–1102.

3. Wallia R, Greenberg A, Piraino B et al. Serum electrolyte patterns in end-stage renal disease. Am J Kidney Dis 1986; 8(2): 98–104.

4. Caravaca F, Arrobas M, Pizarro JL et al. Metabolic acidosis in advanced renal failure: differences between diabetic and nondiabetic patients. Am J Kidney Dis 1999; 33(5): 892–898.

5. Oh MS, Uribarri J, Weinstein J et al. What unique acid-base considerations exist in dialysis patients? Semin Dial 2004; 17(5): 351–364.

6. Brady JP, Hasbargen JA. Correction of metabolic acidosis and its effect on albumin in chronic hemodialysis patients. Am J Kidney Dis 1998; 31(1): 35–40.

7. Coresh J, Astor BC, Greene T et al. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis 2003; 41(1): 1–12.

8. Kovesdy CP, Anderson JE, Kalantar-Zadeh K. Association of serum bicarbonate levels with mortality in patients with non-dialysis-dependent CKD. Nephrol Dial Transplant 2009; 24(4): 1232–1237. Dostupné z DOI: <http://dx.doi.org/10.1093/ndt/gfn633>.

9. Wu DY, Shinaberger CS, Regidor DL et al. Association between serum bicarbonate and death in hemodialysis patients: is it better to be acidotic or alkalotic? Clin J Am Soc Nephrol 2006; 1(1): 70–78.

10. Bommer J, Locatelli F, Satayathum S et al. Association of predialysis serum bicarbonate levels with risk of mortality and hospitalization in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis 2004; 44(4): 661–671.

11. Kurtz I, Maher T, Hulter HN et al. Effect of diet on plasma acid-base composition in normal humans. Kidney Int 1983; 24(5): 670–680.

12. Tesař V, Schück O. Klinická nefrologie.Grada: Praha 2006. ISBN 80–247–0503–6

13. Kurtz I, Kraut J, Ornekian V et al. Acid-base analysis: a critique of the Stewart and bicarbonate-centered approaches. Am J Physiol Renal Physiol 2008; 294(5): F1009-F1031. Dostupné z DOI: <http://dx.doi.org/10.1152/ajprenal.00475.2007>.

14. Goodman AD, Lemann J Jr, Lennon EJ et al. Production, Excretion, and Net Balance of Fixed Acid in Patients with Renal Acidosis. J Clin Invest 1965; 44: 495–506.

15. Uribarri J, Zia M, Mahmood J et al. Acid production in chronic hemodialysis patients. J Am Soc Nephrol 1998; 9(1): 114–120.

16. Dass PD, Kurtz I. Renal ammonia and bicarbonate production in chronic renal failure. Miner Electrolyte Metab 1990; 16(5): 308–314.

17. Tizianello A, De Ferrari G, Garibotto G et al. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest 1980; 65(5): 1162–1173.

18. Pitts RF. The Renal Regulation of Acid Base Balance with Special Reference to the Mechanism for Acidifying the Urine. Science 1945; 102(2638): 49–54.

19. Lameire N, Matthys E. Influence of progressive salt restriction on urinary bicarbonate wasting in uremic acidosis. Am J Kidney Dis 1986; 8(3): 151–158.

20. Schwartz WB, Hall PW, Hays RM et al. On the mechanism of acidosis in chronic renal disease. J Clin Invest 1959; 38(1 Part 1): 39–52.

21. Relman AS. Renal Acidosis and Renal Excretion of Acid in Health and Disease. Adv Intern Med 1964; 12: 295–347.

22. Schambelan M, Sebastian A, Biglieri EG. Prevalence, pathogenesis, and functional significance of aldosterone deficiency in hyperkalemic patients with chronic renal insufficiency. Kidney Int 1980; 17(1): 89–101.

23. Ray S, Piraino B, Chong TK et al. Acid excretion and serum electrolyte patterns in patients with advanced chronic renal failure. Miner Electrolyte Metab 1990; 16(6): 355–361.

24. Ortega LM, Arora S. Metabolic acidosis and progression of chronic kidney disease: incidence, pathogenesis, and therapeutic options. Nefrologia 2012; 32(6): 724–730. Dostupné z DOI: <http://dx.doi.org/10.3265/Nefrologia.pre2012.Jul.11515>.

25. May RC, Kelly RA, Mitch WE. Mechanisms for defects in muscle protein metabolism in rats with chronic uremia. Influence of metabolic acidosis. J Clin Invest 1987; 79(4): 1099–1103.

26. Mitch WE. Mechanisms for activation of proteolysis in uremia. Adv Exp Med Biol 1988; 240: 315–321.

27. Bailey JL, Wang X, England BK et al. The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway. J Clin Invest 1996; 97(6): 1447–1453.

28. Thomas SS, Mitch WE. Mechanisms stimulating muscle wasting in chronic kidney disease: the roles of the ubiquitin-proteasome system and myostatin. Clin Exp Nephrol 2013; 17(2): 174–182. Dostupné z DOI: <http://dx.doi.org/10.1007/s10157–012–0729–9>.

29. Coles GA. Body composition in chronic renal failure. Q J Med 1972; 41(161): 25–47.

30. Ronco C, Kellum JA, Bellomo R. Acid-Base Problems: Basic Physiology. In Critical Care Nephrology. 2nd ed. Elsevier: Philadelphia 2008. ISBN 978–1416042525

31. Ballmer PE, McNurlan MA, Hulter HN et al. Chronic metabolic acidosis decreases albumin synthesis and induces negative nitrogen balance in humans. J Clin Invest 1995; 95(1): 39–45.

32. Movilli E, Viola BF, Camerini C et al. Correction of metabolic acidosis on serum albumin and protein catabolism in hemodialysis patients. J Ren Nutr 2009; 19(2): 172–177. Dostupné z DOI: <http://dx.doi.org/10.1053/j.jrn.2008.08.012>.

33. Bushinsky DA. Acidosis and bone. Miner Electrolyte Metab 1994; 20(1–2): 40–52.

34. Lemann J Jr, Litzow JR, Lennon EJ. The effects of chronic acid loads in normal man: further evidence for the participation of bone mineral in the defense against chronic metabolic acidosis. J Clin Invest 1966; 45(10): 1608–1614.

35. Lemann J Jr, Bushinsky DA, Hamm LL. Bone buffering of acid and base in humans. Am J Physiol Renal Physiol 2003; 285(5): F811-F832.

36. Krieger NS, Sessler NE, Bushinsky DA. Acidosis inhibits osteoblastic and stimulates osteoclastic activity in vitro. Am J Physiol 1992; 262(3 Pt 2): F442-F448.

37. Kraut JA, Mishler DR, Singer FR et al. The effects of metabolic acidosis on bone formation and bone resorption in the rat. Kidney Int 1986; 30(5): 694–700.

38. Chan YL, Savdie E, Mason RS et al. The effect of metabolic acidosis on vitamin D metabolites and bone histology in uremic rats. Calcif Tissue Int 1985; 37(2): 158–164.

39. Graham KA, Hoenich NA, Tarbit M et al. Correction of acidosis in hemodialysis patients increases the sensitivity of the parathyroid glands to calcium. J Am Soc Nephrol 1997; 8(4): 627–631.

40. Coen G, Mazzaferro S, Ballanti P et al. Renal bone disease in 76 patients with varying degrees of predialysis chronic renal failure: a cross-sectional study. Nephrol Dial Transplant 1996; 11(5): 813–819.

41. Coen G, Manni M, Addari O et al. Metabolic acidosis and osteodystrophic bone disease in predialysis chronic renal failure: effect of calcitriol treatment. Miner Electrolyte Metab 1995; 21(6): 375–382.

42. Liao MT, Sung CC, Hung KC et al. Insulin resistance in patients with chronic kidney disease. J Biomed Biotechnol 2012; 2012: 691369. Dostupné z DOI: <http://dx.doi.org/10.1155/2012/691369>.

43. Mak RH. Effect of metabolic acidosis on insulin action and secretion in uremia. Kidney Int 1998; 54(2): 603–607.

44. Mak RH. Insulin and its role in chronic kidney disease. Pediatr Nephrol 2008; 23(3): 355–362.

45. Brungger M, Hulter HN, Krapf R. Effect of chronic metabolic acidosis on thyroid hormone homeostasis in humans. Am J Physiol 1997; 272(5 Pt 2): F648-F653.

46. Disthabanchong S, Treeruttanawanich A. Oral sodium bicarbonate improves thyroid function in predialysis chronic kidney disease. Am J Nephrol 2010; 32(6): 549–556. Dostupné z DOI: <http://dx.doi.org/10.1159/000321461>.

47. Wiederkehr MR, Kalogiros J, Krapf R. Correction of metabolic acidosis improves thyroid and growth hormone axes in haemodialysis patients. Nephrol Dial Transplant 2004; 19(5): 1190–1197.

48. Spaulding SW, Gregerman RI. Free thyroxine in serum by equilibrium dialysis: effects of dilution, specific ions and inhibitors of binding. J Clin Endocrinol Metab 1972; 34(6): 974–982.

49. Gadola L, Noboa O, Marquez MN et al. Calcium citrate ameliorates the progression of chronic renal injury. Kidney Int 2004; 65(4): 1224–1230.

50. Nath KA, Hostetter MK, Hostetter TH. Pathophysiology of chronic tubulo-interstitial disease in rats. Interactions of dietary acid load, ammonia, and complement component C3. J Clin Invest 1985; 76(2): 667–675.

51. Halperin ML, Ethier JH, Kamel KS. Ammonium excretion in chronic metabolic acidosis: benefits and risks. Am J Kidney Dis 1989; 14(4): 267–271.

52. Wesson DE, Simoni J. Acid retention during kidney failure induces endothelin and aldosterone production which lead to progressive GFR decline, a situation ameliorated by alkali diet. Kidney Int 2010; 78(11): 1128–1135. Dostupné z DOI: <http://dx.doi.org/10.1038/ki.2010.348>.

53. de Brito-Ashurst I, Varagunam M, Raftery MJ et al. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol 2009; 20(9): 2075–2084. Dostupné z DOI: <http://dx.doi.org/10.1681/ASN.2008111205>.

54. Phisitkul S, Khanna A, Simoni J et al. Amelioration of metabolic acidosis in patients with low GFR reduced kidney endothelin production and kidney injury, and better preserved GFR. Kidney Int 2010; 77(7): 617–623. Dostupné z DOI: <http://dx.doi.org/10.1038/ki.2009.519>.

55. Rossier A, Bullani R, Burnier M et al. Sodium bicarbonate to slow the progression of chronic kidney disease. Rev Med Suisse 2011; 7(284): 478–482.

56. Jeong J, Kwon SK, Kim HY. Effect of bicarbonate supplementation on renal function and nutritional indices in predialysis advanced chronic kidney disease. Electrolyte Blood Press 2014; 12(2): 80–87. Dostupné z DOI: <http://dx.doi.org/10.5049/EBP.2014.12.2.80>.

57. Goraya N, Simoni J, Jo CH et al. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate. Kidney Int 2014; 86(5): 1031–1038. Dostupné z DOI: <http://dx.doi.org/10.1038/ki.2014.83>.

58. Siggaard-Andersen O. The van Slyke equation. Scand J Clin Lab Invest Suppl 1977; 146: 15–20.

59. Witte DL, Rodgers JL, Barrett DA The anion gap: its use in quality control. Clin Chem 1976; 22(5): 643–646.

60. Schück O. Poruchy metabolizmu vody a elektrolytů s klinickými případy. Grada: Praha 2013. ISBN 978–80–247–3689–1.

61. Schück O. Poruchy metabolizmu vody a elektrolytů v klinické praxi. Grada: Praha 2000. ISBN 80–247–9020–3.

62. Kraut JA, Kurtz I. Metabolic acidosis of CKD: diagnosis, clinical characteristics, and treatment. Am J Kidney Dis 2005; 45(6): 978–993.

63. Morris RC Jr, McSherry E. Symposium on acid-base homeostasis. Renal acidosis. Kidney Int 1972; 1(5): 322–340.

64. Story DA, Tosolini A, Bellomo R et al. Plasma acid-base changes in chronic renal failure: a Stewart analysis. Int J Artif Organs 2005; 28(10): 961–965.

65. Havlín J. Vztah mezi pH a diferencí silných iontů (SID) ve vnitřním prostředí u pacientů s chronickým ledvinným onemocněním v predialyzačním stadiu a při chronické dialýze. Praha, 2015. Disertační práce. Univerzita Karlova. 2. lékařská fakulta. Dostupné z WWW: <https://is.cuni.cz/webapps/zzp/detail/154350/>.

66. Klaboch J, Opatrna S, Matousovic K et al. Acid-base balance in peritoneal dialysis patients: a Stewart-Fencl analysis. Ren Fail 2009; 31(8): 625–632. Dostupné z DOI: <http://dx.doi.org/10.3109/08860220903134076>.

67. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int Suppl 2013; 3(1): 5–14. Dostupné z WWW: <http://www.kdigo.org/clinical_practice_guidelines/pdf/CKD/KDIGO_2012_CKD_GL.pdf>.

68. Goraya N, Simoni J, Jo CH et al. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin J Am Soc Nephrol 2013; 8(3): 371–381. Dostupné z DOI: <http://dx.doi.org/10.2215/CJN.02430312>.

69. Goraya N, Wesson DE. Does correction of metabolic acidosis slow chronic kidney disease progression? Curr Opin Nephrol Hypertens 2013; 22(2): 193–197. Dostupné z DOI: <http://dx.doi.org/10.1097/MNH.0b013e32835dcbbe>.

70. Correction of Metabolic Acidosis in End Stage Renal Disease. ClinicalTrials.gov: NCT01640119. Dostupné z WWW: <https://clinicaltrials.gov/ct2/show/NCT01640119>.

71. Gaggl M, Cejka D, Plischke M et al. Effect of oral sodium bicarbonate supplementation on progression of chronic kidney disease in patients with chronic metabolic acidosis: study protocol for a randomized controlled trial (SoBic-Study). Trials 2013; 14: 196. Dostupné z DOI: <http://dx.doi.org/10.1186/1745–6215–14–196>.

72. Alkali Therapy in Chronic Kidney Disease. ClinicalTrials.gov: NCT01452412. Dostupné z WWW: <https://clinicaltrials.gov/ct2/show/NCT01452412>.

73. Dietary Acid Load, Kidney Function and Disability in Elderly. ClinicalTrials.gov: NCT02691663. Dostupné z WWW: <https://clinicaltrials.gov/ct2/show/NCT02691663>

74. Klaboch J, Opatrna S, Matousovic K et al. End stage of chronic kidney disease and metabolic acidosis. Vnitř Lék 2012; 58(7–8): 519–524.

75. Remer T. Influence of diet on acid-base balance. Semin Dial 2000; 13(4): 221–226.

76. Havlin J, Matousovic K, Schuck O et al. Pathophysiology of metabolic acidosis in patients with reduced glomerular filtration rate according to Stewart-Fencl theory. Vnitř Lék 2009; 55(2): 97–104.

77. Liborio AB, Leite TT. Disturbances in Acid-Base Balance in Patients on Hemodialysis. InTech 2013. Dostupné z WWW: <http://www.intechopen.com/books/howtoreference/hemodialysis/disturbances-in-acid-base-balance-in-patients-on-hemodialysis>

78. Liborio AB, Daher EF, de Castro MC. Characterization of acid-base status in maintenance hemodialysis: physicochemical approach. J Artif Organs 2008; 11(3): 156–159. Dostupné z DOI: <http://dx.doi.org/10.1007/s10047–008–0419–2>.

79. Hernandez Jaras J, Rico Salvador I, Torregrosa de Juan E et al. Does Stewart-Fencl improve the evaluation of acid-base status in stable patients on hemodiafiltration? Nefrologia 2010; 30(2): 214–219. Dostupné z DOI: <http://dx.doi.org/10.3265/Nefrologia.pre2009.Dic.5774>.

80. Marques FO, Liborio AB, Daher EF. Effect of chloride dialysate concentration on metabolic acidosis in maintenance hemodialysis patients. Braz J Med Biol Res 2010; 43(10): 996–1000.

81. Havlin J, Schuck O, Charvat J et al. Acid-base disorders associated with serum electrolyte patterns in patients on hemodiafiltration. Nephrol Ther 2015; 11(7): 551–557. Dostupné z DOI: <http://dx.doi.org/10.1016/j.nephro.2015.04.008>.

82. Havlin J, Schück O, Matoušovic K. A „lingering mystery“ of postdialysis serum bicarbonate concentration. Am J Kidney Dis 2014; 64(6): 1000–1001. Dostupné z DOI: <http://dx.doi.org/10.1053/j.ajkd.2014.09.010>.

83. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis 2003; 42(4 Suppl 3): S1-S201.

84. Tentori F, Karaboyas A, Robinson BM et al. Association of dialysate bicarbonate concentration with mortality in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis 2013; 62(4): 738–746. Dostupné z DOI: <http://dx.doi.org/10.1053/j.ajkd.2013.03.035>.

85. Pun PH, Horton JR, Middleton JP. Dialysate calcium concentration and the risk of sudden cardiac arrest in hemodialysis patients. Clin J Am Soc Nephrol 8(5): 797–803. Dostupné z DOI: <http://dx.doi.org/10.2215/CJN.10000912>.

86. Gotch FA. Pro/Con debate: the calculation on calcium balance in dialysis lowers the dialysate calcium concentrations (pro part). Nephrol Dial Transplant 2009; 24(10): 2994–2996. Dostupné z DOI: <http://dx.doi.org/10.1093/ndt/gfp360>.

87. Movilli E, Gaggia P, Camerini C et al. Effect of oral sodium bicarbonate supplementation on interdialytic weight gain, plasma sodium concentrations and predialysis blood pressure in hemodialysis patients. Blood Purif 2005; 23(5): 379–383.

88. Noh US, Yi JH, Han SW et al. Varying Dialysate Bicarbonate Concentrations in Maintenance Hemodialysis Patients Affect Post-dialysis Alkalosis but not Pre-dialysis Acidosis. Electrolyte Blood Press 2007; 5(2): 95–101. Dostupné z DOI: <http://dx.doi.org/10.5049/EBP.2007.5.2.95>.

89. Effects of Oral Sodium Bicarbonate Supplementation in Haemodialysis Patients (BicHD). ClinicalTrials.gov: NCT02692378. Dostupné z WWW: <https://clinicaltrials.gov/ct2/show/NCT02692378>.

Štítky
Diabetology Endocrinology Internal medicine

Článok vyšiel v časopise

Internal Medicine

Číslo Suppl 6

2016 Číslo Suppl 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#