Vitamin D3 supplementation and cellular calcium homeostasis in patients with chronic kidney disease
Authors:
Ingrid Lajdová; Adrián Okša; Viera Spustová
Authors place of work:
Ústav farmakológie, klinickej a experimentálnej farmakológie LF SZU, Bratislava, Slovenská republika
Published in the journal:
Vnitř Lék 2016; 62(Suppl 6): 40-45
Category:
Reviews
Summary
Mini review summarizes the results of our studies focused on elucidation of the pathophysiological mechanisms of altered calcium homeostasis in nonexcitable cells from patients with early stages of chronic kidney disease (CKD), as well as on determining the effect of vitamin D3 supplementation on these mechanisms. The basic mechanisms of calcium entry to and removal of the cell are already changed in early stages of CKD. These disturbances cause an increased the concentration of cytosolic free calcium ([Ca2+]i), which may change a number of cellular processes, and the expression of various signaling molecules. Vitamin D3 supplementation is a standard procedure of vitamin D insufficiency/ deficiency correction in these patients. The pleiotropic effects of vitamin D may be involved in the modulation of cellular calcium homeostasis. Vitamin D3 supplementation resulted in a reduction in [Ca2+]i by affecting of specific transport systems of calcium cations entry to and removal of the cell. The normalization [Ca2+]i can have a beneficial effect on intracellular signalling, and thus positively influence the functioning of cells, tissues or organs.
Key words:
cellular calcium homeostasis – chronic kidney disease – intracellular calcium – vitamin D
Zdroje
1. KDIGO Clinical Practice Guideline for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009;(113): S1-S130. Dostupné z DOI: <http://dx.doi.org/10.1038/ki.2009.188>.
2. Dusso A, Gonzalez EA, Martin KJ. Vitamin D in chronic kidney disease. Best Pract Res Clin Endocrinol Metab 2011; 25(4): 647–655. Dostupné z DOI: <http://dx.doi.org/10.1016/j.beem.2011.05.005>.
3. Chowdhury R, Kunutsor S, Vitezova A et al. Vitamin D and risk of cause specific death: systematic review and meta-analysis of observational cohort and randomised intervention studies. BMJ 2014; 348: g1903. Dostupné z DOI: <http://dx.doi.org/10.1136/bmj.g1903>.
4. Dusso AS, Brown AJ, Slatopolsky E. VitaminD. Am J Physiol Renal Physiol 2005; 289(1): F8-F28.
5. Tang J. Vitamin D and its role in chronic kidney disease. Nephrol Rounds 2009; 7: 1–6.
6. Liu WC, Zheng CM, Lu CL et al. Vitamin D and immune function in chronic kidney disease. Clin Chim Acta 2015; 450: 135–144. Dostupné z DOI: <http://dx.doi.org/10.1016/j.cca.2015.08.011>.
7. Massry SG, Fadda GZ. Chronic renal failure is a state of cellular calcium toxicity. Am J Kidney Dis 1993; 21(1): 81–86.
8. Ori Y, Korzets A, Malachi T et al. Impaired lymphocyte calcium metabolism in end-stage renal disease: enhanced influx, decreased efflux, and reduced response to mitogen. J Lab Clin Med 1999; 133(4): 391–400.
9. Berridge MJ. Elementary and global aspects of calcium signalling. J Exp Biol 1997; 200(Pt 2): 315–319.
10. Parekh AB, Putney JW Jr. Store-operated calcium channels. Physiol Rev 2005; 85(2): 757–810.
11. Kaderjakova Z, Lajdova I, Horvathova M et al. Effects of chronic kidney disease on blood cells membrane properties. Bioelectrochem 2012; 87: 226–229. Dostupné z DOI: <http://dx.doi.org/10.1016/j.bioelechem.2012.02.006>.
12. Lajdova I, Oksa A, Chorvat D Jr et al. Purinergic P2X7 receptors participate in disturbed intracellular calcium homeostasis in peripheral blood mononuclear cells of patients with chronic kidney disease. Kidney Blood Pres Res 2012; 35(1): 48–57. Dostupné z DOI: <http://dx.doi.org/10.1159/000330349>.
13. Lajdova I, Spustova V, Oksa A et al. Intracellular calcium homeostasis in patients with early stages of chronic kidney disease: effects of vitamin D3 supplementation. Nephrol Dial Transplant 2009; 24(11): 3376–3381. Dostupné z DOI: <http://dx.doi.org/10.1093/ndt/gfp292>.
14. Polak-Jonkisz D, Purzyc L, Laszki-Szcząchor K et al. The endogenous modulators of Ca2+-Mg2+-dependent ATPase in children with chronic kidney disease (CKD). Nephrol Dial Transplant 2010; 25(2): 438–444. <http://dx.doi.org/HYPERLINK „http://dx.doi.org/10.1093/ndt/gfp436“10.1093/ndt/gfp436>.
15. Supnet C, Bezprozvanny I. The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium 2010; 47: 183–189. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ceca.2009.12.014>.
16. Wehrens XH, Lehnart SE, Marks AR. Intracellular calcium release and cardiac disease. Annu Rev Physiol 2005; 67: 69–98.
17. Lajdova I, Spustova V, Oksa A et al. The impact of vitamin D3 supplementation on mechanisms of cell calcium signaling in chronic kidney disease. Bio Med Res Int 2015; 2015: 807673. Dostupné z DOI: <http://dx.doi.org/10.1155/2015/807673>.
18. Partiseti M, Le Deist F, Hivroz C et al. The calcium current activated by T cell receptor and store depletion in human lymphocytes is absent in a primary immunodeficiency. J Biol Chem 1994; 269(51): 32327–32335.
19. Feske S, Picard C, Fischer A. Immunodeficiency due to mutations in ORAI1 and STIM1. Clin Immunol 2010; 135(2): 169–182. Dostupné z DOI: <http://dx.doi.org/10.1016/j.clim.2010.01.011>.
20. Mattson MP, Chan SL. Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium 2003; 34(4–5): 385–397.
21. Somlo S, Ehrlich B. Human disease: calcium signaling in polycystic kidney disease. Curr Biol 2011; 11(9): R356–360.
22. Luo X, Hojayev B, Jiang N et al. STIM1-dependent store-operated Ca2+ entry is required for pathological cardiac hypertrophy. J Mol Cell Cardiol 2012; 52(1): 136–147. Dostupné z DOI: <http://dx.doi.org/10.1016/j.yjmcc.2011.11.003>.
23. McCarl CA, Picard C, Khalil S et al. ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J Allergy Clin Immunol 2009; 124(6): 1311–1318. Dostupné z DOI: <http://dx.doi.org/10.1016/j.jaci.2009.10.007>.
24. Kotturi MF, Carlow DA, Lee JC et al. Identification and functional characterization of voltage-dependent calcium channels in T lymphocytes. J Biol Chem 2003; 278(47): 46949–46960.
25. Stokes L, Gordon J, Grafton G. Non-voltage-gated L-type Ca2+ channels in human T cells. Pharmacology and molecular characterization of the major α pore-forming and auxiliary β-subunits. J Biol Chem 2004; 279(19): 19566–19573.
26. Badou A, Jha MK, Matza D et al. Emerging roles of L-type voltage-gated and other calcium channels in T lymphocytes. Front Immunol 2013; 4: 243. Dostupné z DOI: <http://dx.doi.org/10.1155/2015/807673>.
27. Lajdova I, Chorvat D Jr, Chorvatova A. Rapid effects of 1alpha,25(OH)2D3 in resting human peripheral blood mononuclear cells. Eur J Pharmacol 2008; 586(1–3): 14–23. Dostupné z DOI: <http://dx.doi.org/10.1016/j.ejphar.2008.02.004>.
28. Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev 1998; 50(3): 413–492.
29. Gu BJ, Zhang WY, Bendall LJ et al. Expression of P2X(7) purinoceptors on human lymphocytes and monocytes: evidence for nonfunctional P2X(7) receptors. Am J Physiol Cell Physiol 2000; 279(4): C1189-C1197.
30. Howarth AR, Conway BR, Bailey MA. Vascular and inflammatory actions of P2X receptors in renal injury. Auton Neurosci 2015; 191: 135–140. Dostupné z DOI: <http://dx.doi.org/10.1016/j.autneu.2015.05.001>.
31. North RA. Molecular physiology of P2X receptors. Physiol Rev 2002; 82(4): 1013–1067.
32. Vonend O, Turner CM, Chan ChM et al. Glomerular expression of ATP-sensitive P2X7 receptor on diabetic and hypertensive rat models. Kidney Int 2004; 66(1): 157–166.
33. Jorgensen NR, Henriksen Z, Sorensen OH et al. Intracellular calcium signaling occurs between human osteoblasts and osteoclasts and requires activation of osteoclast P2X7 receptors. J Biol Chem 2002; 277(9): 7574–7580.
34. Di Virgilio F, Sollini A. P2 receptors: new potential players in atherosclerosis. Br J Pharm 2002; 135(4): 831–842.
35. Birch RE, Schwiebert EM, Peppiatt-Wildman CM et al. Emerging key roles for P2X receptors in the kidney. Front Physiol 2013; 4: 262. Dostupné z DOI:<http://dx.doi.org/10.3389/fphys.2013.00262>.
36. Ferreira LGB, Reis RAM, Alves LA et al. Intracellular signaling pathways integrating the pore associated with P2X7R receptor with other large pores. In: Kaneez FS. Patch Clamp Technique 2012: 37–54. Tech Open Access Publishing, Vienna, Austria. ISBN 978–953–51–0406–3. Dostupné z DOI: <http://cdn.intechopen.com/pdfs/33627/InTech-Intracellular_signaling_pathways_integrating_the_pore_associated_with_p2x7r_receptor_with_other_large_pores.pdf>.
37. Franco-Martinez S, Nino-Moreno P, Bernal-Silva S et al. Expression and function of the purinergic receptor P2X7 in patients with pulmonary tuberculosis. Clin Exp Immunol 2006; 146(2): 253–261.
38. Garcia-Hernandez MH, Portales-Cervantes L, Cortez-Espinosa N et al. Expression and function of P2X7 receptor and CD39/Entpd1 in patients with type 2 diabetes and their association with biochemical parameters. Cell Immunol 2011; 269(2): 135–143. Dostupné z DOI: <http://dx.doi.org/10.1016/j.cellimm.2011.03.022>.
39. Madec S, Rossi C, Chiarugi M et al. Adipocyte P2X7 receptors expression: a role in modulating inflammatory response in subjects with metabolic syndrome? Atherosclerosis 2011; 219(2): 552–558. Dostupné z DOI: <http://dx.doi.org/10.1016/j.atherosclerosis.2011.09.012>.
40. Morvova M Jr, Lajdova I, Spustova V et al. The effect of vitamin D3 supplementation on intracellular calcium and plasma membrane calcium ATPase activity in early stages of chronic kidney disease. Physiol Res 2014; 63(Suppl 4): S593-S599.
41. Gafter U, Malachi T, Barak H et al. Red blood cell calcium homeostasis in patients with end-stage renal disease. J Lab Clin Med 1989; 114(3): 222–231.
42. Holton ML, Wang W, Emerson M et al. Plasma membrane calcium ATPase proteins as novel regulators of signal transduction pathways. World J Biol Chem 2010; 1(6): 201–208. Dostupné z DOI: <http://dx.doi.org/10.4331/wjbc.v1.i6.201>.
43. Bautista DM, Lewis RS. Modulation of plasma membrane calcium-ATPase activity by local calcium microdomains near CRAC channels in human T cells. J Physiol 2004; 556(Pt 3): 805–817.
44. Glendenning P, Ratajczak T, Dick IM et al. Calcitriol upregulates expression and activity of the 1b isoform of the plasma membrane calcium pump in immortalized distal kidney tubular cells. Arch Biochem Biophys 2000; 380(1): 126–132.
45. Glendenning P, Ratajczak T, Dick IM et al. Regulation of the 1b isoform of the plasma membrane calcium pump by 1,25-dihydroxyvitamin D3 in rat osteoblast-like cells. J Bone Miner Res 2001; 16(3): 525–534.
46. Kip SN, Strehler EE. Vitamin D3 up regulates plasma membrane Ca2+-ATPase expression and potentiates apico-basal Ca2+ flux in MDCK cells. Am J Physiol-Renal Physiol 2004; 286(2): F363-F369.
47. Lajdova I, Spustova V. Calcium Transport across Plasma Membrane in Early Stages of Chronic Kidney Disease – Impact of Vitamin D3 Supplementation. J Kidney 2015; 1: 108. Dostupné z DOI: <http://dx.doi.org/10.4172/2472–1220.1000108>.
Štítky
Diabetology Endocrinology Internal medicineČlánok vyšiel v časopise
Internal Medicine
2016 Číslo Suppl 6
Najčítanejšie v tomto čísle
- Metabolic acidosis in chronic kidney disease
- Current options of treatment of hyponatremia
- Gitelman´s syndrome as common cause of hypokalemia and hypomagnesemia
- Osteoporosis – epidemiology and pathogenesis