Current treatment options in Maturity-Onset Diabetes of the Young
Authors:
Ludmila Brunerová 1; Jana Urbanová 1; Jan Brož 2
Authors place of work:
Diabetologické centrum II. interní kliniky 3. LF UK a FN Královské Vinohrady, Praha
1; Interní klinika 2. LF UK a FN Motol, Praha
2
Published in the journal:
Vnitř Lék 2018; 64(4): 375-379
Category:
Reviews
Summary
The discovery of MODY (Maturity-Onset Diabetes of the Young) and the elucidation of its heritability enabled more precise clinical characteristics of different MODY subtypes and led to understanding that glucokinase MODY (GCK-MODY) is not associated with vascular complications in long term follow-up, whereas MODY of transcription factors (e.g. HNF1A-MODY) is in case of bad metabolic control connected with the acceleration of particularly microvascular complications. There is a strong evidence of the needlessness of any specific antidiabetic treatment in prognosticaly favourable GCK-MODY (except for the pregnancy). On the contrary, in MODY of transcription factors, including the most common one – HNF1A-MODY, the treatment, traditionally based on sulphonylurea derivatives (and after their failure on insulin) is required. Due to wider spectrum of available antidiabetic agents offering individualization of the treatment, the question of efficacy of other antidiabetic agents in MODY patients arises. This review article summarizes current knowledge of therapeutic options in patients with MODY.
Key words:
insulin – MODY – oral hypoglycemic drugs – treatment
Zdroje
1. Anık A, Çatlı G, Abacı A et al. Maturity-onset diabetes of the young (MODY): an update. J Pediatr Endocrinol Metab 2015; 28(3–4): 251–263. Dostupné z DOI: <http://dx.doi.org/10.1515/jpem-2014–0384>,
2. Tattersall RB. Mild familial diabetes with dominant inheritance. QJ Med 1974; 43(170): 339–357.
3. Lebovitz HE. Oral hypoglycemic agents. Prim Care 1988; 15(2): 353–369.
4. Thanabalasingham G, Pal A, Selwood MP et al. Systematic assessment of etiology in adults ith clinical diagnosis of young-onset Type 2 diabetes is a successful strategy for identifying maturity-onset diabetes of the young. Diabetes Care 2012; 35(6): 1206–1212. Dostupné z DOI: <http://dx.doi.org/10.2337/dc11–1243>.
5. Osbak KK, Colclough K, Saint-Martin C et al. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat 2009; 30(11): 1512–1526. Dostupné z DOI: <http://dx.doi.org/10.1002/humu.21110>.
6. Stride A, Shields B, Gill-Carey O et al. Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia. Diabetologia 2014; 57(1): 54–56. Dostupné z DOI: <http://dx.doi.org/10.1007/s00125–013–3075-x>.
7. Gupta RK, Vatamaniuk MZ, Lee CS et al. The MODY1 gene HNF-4α regulates selected genes involved in insulin secretion. J Clin Invest 2005; 115(4): 1006–1015.
8. Vaxillaire M, Pueyo ME, Clément K et al. Insulin secretion and insulin sensitivity in diabetic and non-diabetic subjects with HNF-1alfa mutations. Eur J Endocrinol 1999; 141(6): 609–618.
9. Brunerová L, Brož J, Průhová Š et al. Maturity Diabetes of the Young 3. DMEV 2006; 9(2): 57–61.
10. Yamagata K, Oda N, Kausami PJ et al. Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the zouny (MODY 3). Nature 1996; 384(6608): 455–458. Dostupné z DOI: <http://dx.doi.org/10.1038/384455a0>.
11. Shepherd M, Hattersley A. “I don´t feel like a diabetic any more»: the impact of stopping insulin in patients with maturity-onset diabetes of the young following genetic testing. Clin Med 2004; 4(2): 144–147.
12. Pearson E, Starkey B, Powell R et al. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet 2003; 362(9392): 1275–1281. Dostupné z DOI: <http://dx.doi.org/10.1016/S0140–6736(03)14571–0>.
13. Shepherd M, Pearson E, Houghton J et al. No deterioration in glycaemic control in HNF-1α Maturity-Onset Diabetes of the Young following transfer from long-term insulin to sulphonylureas. Diabetes Care 2003; 26(11): 3191–3192.
14. Sagen JV, Pearson ER, Johansen A et al. Preserved insulin response to tolbutamide in HNF-1alpha mutation carriers. Diabet Med 2005; 22(4): 406–409. Dostupné z DOI: <http://dx.doi.org/10.1111/j.1464–5491.2005.01439.x>.
15. Pearson ER, Pruhova S, Tack CJ et al. Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4alpha mutations in a large European collection. Diabetologia 2005; 48(5): 878–885. Dostupné z DOI: <http://dx.doi.org/10.1007/s00125–005–1738-y>.
16. Dunne M, Cosgrove K, Shepherd M et al. Potassium channels, sulphonylurea receptors and control of insulin release. Trends Endocrinol Metab 1999; 10(4): 146–152.
17. Pearson E, Liddell W, Shepherd M et al. Sensitivity to sulphonylureas in patients with HNF-1α gene mutations: evidence for pharmacogenetics in diabetes. Diabet Med 2000; 17(7): 543–545.
18. Boileau P, Wolfrum Ch, Shih D et al. Decreased glibenclamide uptake in hepatocytes of hepatocyte nuclear factor-1alpha-deficient mice: a mechanism for hypersensitivity to sulfonylurea therapy in patients with maturity-onset diabetes of the young, type 3 (MODY3). Diabetes 2002; 51(Suppl 3): S343-S348. Dostupné z DOI: <https://doi.org/10.2337/diabetes.51.2007.S343>.
19. Urbanova J, Andel M, Potockova J et al. Half-Life of Sulfonylureas in HNF1-Α and HNF4-Α Human MODY Patients is not Prolonged as Suggested by the Mouse HNF1-α(-/-) Model. Curr Pharm Des 2015; 21(39): 5736–5748.
20. Fajans SS, Brown MB. Administration of sulfonylureas can increase glucose-induced insulin secretion for decades in patients with maturity-onset diabetes of the young. Diabetes Care 1993; 16(9): 1254–1261.
21. Brunerová L, Treslová L, Průhová S et al. Glibenklamid místo inzulinová: nová šance pro pacienty s MODY3 – kazuistika. Vnitř Lék 2006; 52(3): 275–279.
22. Shepherd M, Shields B, Ellard S et al. A genetic diagnosis of HNF1-Α diabetes alters treatment and improves glycaemic control in the majority of insulin-treated patients. Diabet Med 2009; 26(4): 437–441. Dostupné z DOI: <http://dx.doi.org/10.1111/j.1464–5491.2009.02690.x>.
23. Raile K, Schober E, Konrad K et al. Treatment of young patients with HNF1-Α mutations (HNF1-Α-MODY). Diabet Med 2015; 32(4): 526–530. Dostupné z DOI: <http://dx.doi.org/10.1111/dme.12662>.
24. Demol S, Lebenthal Y, Bar-Meisels M et al. A family with a novel termination mutation in hepatic nuclear factor 1α in maturity-onset diabetes of the young type 3 which is unresponsive to sulphonylurea therapy. Horm Res Paediatr 2014; 81(4): 280–284. Dostupné z DOI: <http://dx.doi.org/10.1159/000356925>.
25. Yoshiuchi I, Yamagata K, Yang Q et al. Three new mutations in the hepatocyte nuclear factor-1alpha gene in Japanese subjects with diabetes mellitus: clinical features and functional characterization. Diabetologia 1999; 42(5): 621–626.
26. Horikawa Y, Iwasaki N, Hara M et al. Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet 1997; 17(4): 384–385. Dostupné z DOI: <http://dx.doi.org/10.1038/ng1297–384>.
27. Pearson ER, Badman MK, Lockwood CR et al. Contrasting diabetes phenotypes associated with hepatocyte nuclear factor-1alpha and -1beta mutations. Diabetes Care 2004; 27(5): 1102–1107.
28. Hattersley AT, Pearson ER. Minireview: pharmacogenetics and beyond: the interaction of therapeutic response, beta-cell physiology, and genetics in diabetes. Endocrinology 2006; 147(6): 2657–2663. Dostupné z DOI: <http://dx.doi.org/10.1210/en.2006–0152>.
29. Tuomi T, Honkanen EH, Isomaa B et al. Improved prandial glucose control with lower risk of hypoglycemia with nateglinide than with glibenclamide in patients with maturity-onset diabetes of the young type 3. Diabetes Care 2006; 29(2): 189–194.
30. Becker M, Galler A, Raile K. Meglitinide analogues in adolescent patients with HNF1-Α-MODY (MODY 3). Pediatrics 2014; 133(3): e775-e779. Dostupné z DOI: <http://dx.doi.org/10.1542/peds.2012–2537>.
31. Wędrychowicz A, Ciechanowska M, Stelmach M et al. Effectiveness of Metformin Treatment in the Teenager with Maturity-Onset Diabetes of the Young Type 3 and Oligomenorrhoea: A Case Presentation. J Diabetes Metab 2014; 5: 327. Dostupné z DOI: <http://dx.doi.org/10.4172/2155–6156.1000327>.
32. Østoft SH. Incretin hormones and maturity onset diabetes of the young – pathophysiological implications and anti-diabetic treatment potential. Dan Med J 2015; 62(9): pii: B4860.
33. Østoft SH, Bagger JI, Hansen T et al. Postprandial incretin and islet hormone responses and dipeptidyl-peptidase 4 enzymatic activity in patients with maturity onset diabetes of the young. Eur J Endocrinol 2015; 173(2): 205–215. Dostupné z DOI: <http://dx.doi.org/10.1530/EJE-15–0070>.
34. Østoft SH, Bagger JI, Hansen T et al. Incretin effect and glucagon responses to oral and intravenous glucose in patients with maturity-onset diabetes of the young--type 2 and type 3. Diabetes 2014; 63(8): 2838–2844. Dostupné z DOI: <http://dx.doi.org/10.2337/db13–1878>.
35. Østoft SH, Bagger JI, Hansen T et al. Glucose-lowering effects and low risk of hypoglycemia in patients with maturity-onset diabetes of the young when treated with a GLP-1 receptor agonist: a double-blind, randomized, crossover trial. Diabetes Care 2014; 37(7): 1797–1805. <http://dx.doi.org/10.2337/dc13–3007>.
36. Katra B, Klupa T, Skupien J et al. Dipeptidyl peptidase-IV inhibitors are efficient adjunct therapy in HNF1-Α maturity-onset diabetes of the young patients – report of two cases. Diabetes Technol Ther 2010; 12(4): 313–316. Dostupné z DOI: <http://dx.doi.org/10.1089/dia.2009.0159>.
37. Mangrum Ch, Rush E, Shivaswamy V. Genetically Targeted Dipeptidyl Peptidase-4 Inhibitor Use in a Patient with a Novel Mutation of MODY type 4. Clin Med Insights Endocrinol Diabetes 2015; 8: 83–86. Dostupné z DOI: <http://dx.doi.org/10.4137/CMED.S31926>.
38. Hohendorff J, Szopa M, Skupien J et al. A single dose of dapagliflozin, an SGLT-2 inhibitor, induces higher glycosuria in GCK- and HNF1-Α-MODY than in type 2 diabetes mellitus. Endocrine 2017; 57(2): 272–279. Dostupné z DOI: <http://dx.doi.org/10.1007/s12020–017–1341–2>.
39. Ovsyannikova AK, Rymar OD, Shakhtshneider EV et al. ABCC8-Related Maturity-Onset Diabetes of the Young (MODY12): Clinical Features and Treatment Perspective. Diabetes Ther 2016; 7(3): 591–600. Dostupné z DOI: <http://dx.doi.org/10.1007/s13300–016–0192–9>.
40. Thanabalasingham G, Owen KR. Diagnosis and management of maturity onset diabetes of the young (MODY). BMJ 2011; 343: d6044. Dostupné z DOI: <http://dx.doi.org/10.1136/bmj.d6044>.
41. Murphy R. Monogenic diabetes and pregnancy. Obstet Med 2015; 8(3): 114–120. Dostupné z DOI: <http://dx.doi.org/10.1177/1753495X15590713>.
42. 42 Shepherd M, Brook AJ, Chakera AJ et al. Management of sulfonylurea-treated monogenic diabetes in pregnancy: implications of placental glibenclamide transfer. Diabet Med 2017; 34(10): 1332–1339. Dostupné z DOI: <http://dx.doi.org/10.1111/dme.13388>.
43. Chakera AJ, Steele AM, Gloyn AL et al. Recognition and management of individuals with hyperglycemia because of a heterozygous glucokinase mutation. Diabetes Care 2015; 38(7): 1383–1392. Dostupné z DOI: <http://dx.doi.org/10.2337/dc14–2769>.
44. Pearon ER, Badman MK, Lockwood CR et al. Contrasting diabetes phenotypes associated with hepatocyte nuclear factor-1alpha and -1beta mutations. Diabetes Care 2004; 27(5): 1102–1107.
Štítky
Diabetology Endocrinology Internal medicineČlánok vyšiel v časopise
Internal Medicine
2018 Číslo 4
Najčítanejšie v tomto čísle
- Diagnosis of MODY – brief overview for clinical practice
- Cyclic Cushing’s syndrome: a case study and overview
- Virilization as demonstration of hypertestosteronism by ovarian tumor: case report
- Acquired hemophilia A: case report