Biologic therapy for dyslipidemia
Authors:
David Karásek
Authors place of work:
III. Interní klinika – nefrologická, revmatologická a endokrinologická, LF UP a FN Olomouc
Published in the journal:
Vnitř Lék 2021; 67(4): 206-211
Category:
Main Topic
Summary
Dyslipidemia treatment represents a very dynamically growing segment of pharmacotherapy, including a production of biological agents. Nowadays, they are targeting at various proteins that are involved in the synthesis, transport, or metabolism of lipoproteins. This review provides a statement of current options for the biological treatment of dyslipidemias and for other products that have the potential to broaden its spectrum in the near future.
Keywords:
PCSK9-inhibitors – inclisiran – evinacumab – volanesorsen – APO(a)-LRx – mipomersen
Zdroje
1. Davidson MH. Biologic therapies for dyslipidemia. Curr Atheroscler Rep 2004; 6: 69–72.
2. Jia X, Liu J, Mehta A et al. Lipid-Lowering Biotechnological Drugs: from Monoclonal Antibodies to Antisense Therapies-a Clinical Perspective. Cardiovasc Drugs Ther 2020; doi: 10.1007/s10557-020-07082-x.
3. Navarese EP, Kolodziejczak M, Schulze V et al. Effects of Proprotein Convertase Subtilisin/ Kexin Type 9 Antibodies in Adults With Hypercholesterolemia: A Systematic Review and Meta-analysis. Ann Intern Med 2015; 163: 40–51.
4. Squizzato A, Suter MB, Nerone M et al. PCSK9 inhibitors for treating dyslipidemia in patients at different cardiovascular risk: a systematic review and a meta-analysis. Intern Emerg Med 2017; 12: 1043–1053.
5. Zhang J, Tecson KM, Rocha NA, McCullough PA. Usefulness of alirocumab and evolocumab for the treatment of patients with diabetic dyslipidemia. Proc (Bayl Univ Med Cent) 2018; 31: 180–184.
6. Taskinen MR, Del Prato S, Bujas-Bobanovic M et al. Efficacy and safety of alirocumab in individuals with type 2 diabetes mellitus with or without mixed dyslipidaemia: Analysis of the ODYSSEY LONG TERM trial. Atherosclerosis 2018; 276: 124–130.
7. Ray KK, Leiter LA, Müller-Wieland D et al. Alirocumab vs usual lipid-lowering care as add-on to statin therapy in individuals with type 2 diabetes and mixed dyslipidaemia: The ODYSSEY DM-DYSLIPIDEMIA randomized trial. Diabetes Obes Metab 2018; 20: 1479–1489.
8. Sabatine MS, Giugliano RP, Keech AC et al. FOURIER Steering Committee and Investigators. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med 2017; 376: 1713–1722.
9. Sabatine MS, De Ferrari GM, Giugliano RP et al. Clinical Benefit of Evolocumab by Severity and Extent of Coronary Artery Disease: Analysis From FOURIER. Circulation 2018; 138: 756–766.
10. Bonaca MP, Nault P, Giugliano RP et al. Low-Density Lipoprotein Cholesterol Lowering With Evolocumab and Outcomes in Patients With Peripheral Artery Disease: Insights From the FOURIER Trial (Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk). Circulation 2018; 137: 338–350.
11. Giugliano RP, Pedersen TR, Park JG et al. FOURIER Investigators. Clinical efficacy and safety of achieving very low LDL-cholesterol concentrations with the PCSK9 inhibitor evolocumab: a prespecified secondary analysis of the FOURIER trial. Lancet 2017; 390: 1962–1971.
12. Sabatine MS, Leiter LA, Wiviott SD et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol 2017; 5: 941–950.
13. Charytan DM, Sabatine MS, Pedersen TR et al. FOURIER Steering Committee and Investigators. Efficacy and Safety of Evolocumab in Chronic Kidney Disease in the FOURIER Trial. J Am Coll Cardiol 2019; 73: 2961–2970.
14. Schwartz GG, Steg PG, Szarek M et al. ODYSSEY OUTCOMES Committees and Investigators. Alirocumab and Cardiovascular Outcomes After Acute Coronary Syndrome. N Engl J Med 2018; 379: 2097–2107.
15. Steg PG, Szarek M, Bhatt DL et al. Effect of Alirocumab on Mortality After Acute Coronary Syndromes. Circulation 2019; 140: 103–112.
16. Jukema JW, Szarek M, Zijlstra LE et al. ODYSSEY OUTCOMES Committees and Investigators. Alirocumab in Patients With Polyvascular Disease and Recent Acute Coronary Syndrome: ODYSSEY OUTCOMES Trial. J Am Coll Cardiol 2019; 74: 1167–1176.
17. Goodman SG, Aylward PE, Szarek M el al. ODYSSEY OUTCOMES Committees and Investigators. Effects of Alirocumab on Cardiovascular Events After Coronary Bypass Surgery. J Am Coll Cardiol 2019; 74: 1177–1186.
18. Schwartz GG, Steg PG, Szarek M et al. ODYSSEY OUTCOMES Committees and Investigators. Peripheral Artery Disease and Venous Thromboembolic Events After Acute Coronary Syndrome: Role of Lipoprotein(a) and Modification by Alirocumab: Prespecified Analysis of the ODYSSEY OUTCOMES Randomized Clinical Trial. Circulation 2020; 141: 1608–1617.
19. Bittner VA, Szarek M, Aylward PE et al. ODYSSEY OUTCOMES Committees and Investigators. Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome. J Am Coll Cardiol 2020; 75: 133–144.
20. Ray KK, Colhoun HM, Szarek M et al. ODYSSEY OUTCOMES Committees and Investigators. Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: a prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial. Lancet Diabetes Endocrinol 2019; 7: 618–628.
21. Ridker PM, Revkin J, Amarenco P et al. SPIRE Cardiovascular Outcome Investigators. Cardiovascular Efficacy and Safety of Bococizumab in High-Risk Patients. N Engl J Med 2017; 376: 1527–1539.
22. Ridker PM, Tardif JC, Amarenco P et al. SPIRE Investigators. Lipid-Reduction Variability and Antidrug-Antibody Formation with Bococizumab. N Engl J Med 2017; 376: 1517–1526.
23. Cui Y, Huo Y, Li X et al. Tafolecimab, a novel potential long-acting PCSK9 monoclonal antibody: efficacy and safety in healthy and hypercholesterolemia subjects. Eur Heart J 2020; doi.org/10.1093/ehjci/ehaa946.3327.
24. Pisciotta L, Favari E, Magnolo L et al. Characterization of three kindreds with familial combined hypolipidemia caused by loss-of-function mutations of ANGPTL3. Circ Cardiovasc Genet 2012; 5: 42–50.
25. Ahmad Z, Banerjee P, Hamon S et al. Inhibition of Angiopoietin-Like Protein 3 With a Monoclonal Antibody Reduces Triglycerides in Hypertriglyceridemia. Circulation 2019; 140: 470–486.
26. Raal FJ, Rosenson RS, Reeskamp LF et al. ELIPSE HoFH Investigators. Evinacumab for Homozygous Familial Hypercholesterolemia. N Engl J Med 2020; 383: 711–720.
27. Rosenson RS, Burgess LJ, Ebenbichler CF et al. Evinacumab in Patients with Refractory Hypercholesterolemia. N Engl J Med 2020; 383: 2307–2319.
28. Macchi C, Sirtori CR, Corsini A et al. A new dawn for managing dyslipidemias: The era of rna-based therapies. Pharmacol Res 2019; 150: 104413.
29. https://www.escardio.org/Journals/E-Journal-of-Cardiology-Practice/Volume-19/new- -drugs-coming-up-in-the-field-of-lipid-control.
30. Ray KK, Landmesser U, Leiter LA et al. Inclisiran in Patients at High Cardiovascular Risk with Elevated LDL Cholesterol. N Engl J Med 2017; 376: 1430–1440.
31. Wright RS, Collins MG, Stoekenbroek RM et al. Effects of Renal Impairment on the Pharmacokinetics, Efficacy, and Safety of Inclisiran: An Analysis of the ORION-7 and ORION-1 Studies. Mayo Clin Proc 2020; 95: 77–89.
32. Hovingh GK, Lepor NE, Kallend D et al. Inclisiran Durably Lowers Low-Density Lipoprotein Cholesterol and Proprotein Convertase Subtilisin/Kexin Type 9 Expression in Homozygous Familial Hypercholesterolemia: The ORION-2 Pilot Study. Circulation 2020; 141: 1829–1831.
33. Raal FJ, Kallend D, Ray KK et al. ORION-9 Investigators. Inclisiran for the Treatment of Heterozygous Familial Hypercholesterolemia. N Engl J Med 2020; 382: 1520–1530.
34. Ray KK, Wright RS, Kallend D et al. ORION-10 and ORION-11 Investigators. Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol. N Engl J Med 2020; 382: 1507–1519.
35. Graham MJ, Lee RG, Brandt TA et al. Cardiovascular and Metabolic Effects of ANGPTL3 Antisense Oligonucleotides. N Engl J Med 2017; 377: 222–232.
36. Tirronen A, Hokkanen K, Vuorio T, Ylä-Herttuala S. Recent advances in novel therapies for lipid disorders. Hum Mol Genet 2019; 28: R49–R54.
37. Zwol WV, Rimbert A, Kuivenhoven JA. The Future of Lipid-lowering Therapy. J Clin Med 2019; 8: 1085.
38. Witztum JL, Gaudet D, Freedman SD et al. Volanesorsen and Triglyceride Levels in Familial Chylomicronemia Syndrome. N Engl J Med 2019; 381: 531–542.
39. Gouni-Berthold I, Alexander V, Digenio A et al. Apolipoprotein C-III inhibition with volanesorsen in patients with hypertriglyceridemia (COMPASS): a randomized, double-blind, placebo-controlled trial. Atheroscler Suppl 2017; 28: e1–e2.
40. Gelrud A, Digenio A, Alexander V et al. Treatment with volanesorsen (VLN) reduced triglycerides and pancreatitis in patients with FCS and sHTG vs placebo: results of the APPROACH and COMPASS. J Clin Lipidol 2018; 12: 537.
41. https://ir.ionispharma.com/news-releases/news-release-details/akcea-and-ionis-report- top-line-results-broaden-study-waylivrar.
42. Alexander VJ, Xia S, Hurh E et al. N-acetyl galactosamine-conjugated antisense drug to APOC3 mRNA, triglycerides and atherogenic lipoprotein levels. Eur Heart J 2019; 40: 2785–2796.
43. Tsimikas S, Viney NJ, Hughes SG et al. Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study. Lancet 2015; 386: 1472–1483.
44. Viney NJ, van Capelleveen JC, Geary RS et al. Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials. Lancet 2016; 388: 2239–2253.
45. Tsimikas S, Karwatowska-Prokopczuk E, Gouni-Berthold I et al. AKCEA-APO(a)-LRx Study Investigators. Lipoprotein(a) Reduction in Persons with Cardiovascular Disease. N Engl J Med 2020; 382: 244–255.
Štítky
Diabetology Endocrinology Internal medicineČlánok vyšiel v časopise
Internal Medicine
2021 Číslo 4
Najčítanejšie v tomto čísle
- Chronic obstructive pulmonary disease: diagnosis and treatment of stable phase of disease; personalized treatment approach using phenotype features of the disease Summary of the 2020–2021 Czech Pneumological and Phthiseological Society position paper
- Thymoma – disease of many faces
- Targeted and biological drugs in the treatment of inflammatory rheumatic diseases
- Biologic therapy for dyslipidemia