#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Formation of the vascular bed: a review of its molecular mechanisms and therapeutic implications


Authors: O. Naňka;  M. Grim
Authors place of work: Univerzita Karlova v Praze, 1. lékařská fakulta, Anatomický ústav
Published in the journal: Čas. Lék. čes. 2009; 148: 158-163
Category: Review Article

Summary

This review provides an update on recent advances in the field of molecular mechanisms of vascular bed development. We introduce the data about growth factors and their receptors and discuss the therapeutic potential of their modulation. The role of tissue hypoxia in vessel development is presented and documented by our own results. We review the role of ephrins and their receptors in differentiation of arterial and venous phenotype of endothelial cells and its loss in vein graft during adaptation to arterial circulation. Role of mutation in Foxc2 associated with valve failure in veins is discussed. Recent findings showing common genetic signals navigating blood vessels and nerves to common pathways are also described. Finally, we summarize current state of knowledge in therapeutic induction and inhibition of angiogenesis.

Key words:
vasculogenesis, angiogenesis, growth factors, hypoxia.


Zdroje

1. Ide AG. Vascularization of the Brown-Pearce rabbit epithelioma transplant as seen in the transparent ear chamber. Am J Radial 1939; 42: 891–899.

2. Folkman J, Merler E, Abernathy C, Williams G. Isolation of a tumor factor responsible for angiogenesis. J Exp Med 1971; 133: 275–288.

3. Senger DR, Galli J, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983; 219: 983–985.

4. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989; 161: 851–858.

5. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N. Inhibition of vascular end.othelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993; 362: 841–844.

6. Presta LG, Chen H, O’Connor J, Chisholm V, Meng YG, Krummen L, Winkler M, Ferrara N. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 1997; 57: 4593–4599.

7. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992; 359: 843–845.

8. Naňka O, Valášek P, Dvořáková M, Grim M. Experimental hypoxia and embryonic angiogenesis. Dev Dynamics 2006; 235: 723–733.

9. Naňka O, Křížová P, Fikrle M, Tůma M, Bláha M, Sedmera D, Grim M. Abnormal myocardial and coronary vasculature development under hypoxia leads to embryonic heart failure and death. Anat Record 2008; 291: 1187–1199.

10. Kamei M, Saunders WB, Bayless KJ, Dye L, Davis GE, Weinstein BM. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 2006; 442: 453–456.

11. Kucera T, Eglinger J, Strilić B, Lammert E. Vascular lumen formation from a cell biological perspective. Novartis Found Symp 2007; 283: 46–56.

12. Schoenwolf GC, Bleyl B, Brauer PR, Francis-West PH. Larsen’s Human Embryology, 4. vyd. Philadelphia: Churchill Livingstone 2009; 712 s.

13. Wilting J, Brand-Saberi B, Huang R, Zhi Q, Kontges G, Ordahl CP, Christ B. Angiogenic potential of the avian somite. Dev Dynamics 1995; 202: 165–171.

14. Brand-Saberi B, Seifert R, Grim M, Wilting J, Kuehlewein M, Christ B. Blood vessel formation in the avian limb bud involves angioblastic and angiotrophic growth. Dev Dynamics 1995; 202: 181–194.

15. Wilting J, Papoutsi M, Schneider M, Christ B. The lymphatic endothelium of the avian wing is of somitic origin. Dev Dynamics 2000; 217: 271–278.

16. Buschmann I, Schaper W. Arteriogenesis Versus Angiogenesis: Two Mechanisms of Vessel Growth. News Physiol Sci 1999; 14: 121–125.

17. Roya H, Bhardwaja S, Yla-Herttuala. Biology of vascular endothelial growth factors. FEBS Letters 2006; 580: 2879–2887.

18. Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NP, Risau W, Ullrich A. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 1993; 72: 835–846.

19. Flamme I, Breier G, Risau W. Vascular endothelial growth‑factor (vegf) and vegf receptor-2(flk-1) are expressed during vasculogenesis and vascular differentiation in the quail embryo. Dev Biology 1995; 169: 699–712.

20. Weinstein BM. What quides early embryonic blood vessel formation? Dev Dynamics 1999; 215: 2–11.

21. Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 1998; 93: 741–753.

22. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996; 87: 71–80.

23. Vikkula M, Boon LM, Carraway KL, Calvert JT, Diamonti AJ, Goumnerov B, Pasyk KA, Marchuk DA, Warman ML, Cantley LC, Mulliken JB, Olsen BR. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase Tie2. Cell 1996; 87: 1181–1190.

24. Herzog Y, Kalcheim Ch, Kahane N, Reshef R, Neufeld G. Differential expression of neuropilin-1 and neuropilin-2 in arteries and veins. Mech Dev 2001; 109: 115–119.

25. Aitsebaomo J, Portbury AL, Schisler JC, Patterson C. Brothers and sisters: molecular insights into arterial-venous heterogeneity. Circ Res 2008; 103: 929–939.

26. Kudo FA, Muto A, Maloney P, Pimiento JM, Bergaya S, Fitzgerald TN, Westvik TS, Frattini JC, Breuer CK, Cha CH, Nishibe T, Tellides G, Sessa WC, Dardik A. Venous identity is lost but arterial identity is not gained during vein graft adaptation. Arterioscler Thromb Vasc Biol 2007; 27: 1562–1572.

27. Mellor RH, Brice G, Stanton AW, French J, Smith A, Jeffery S, Levick JR, Burnand KG, Mortimer PS. Mutations in FOXC2 are strongly associated with primary valve failure in veins of the lower limb. Circulation 2007; 115: 1912–1920.

28. Eichmann A, Le Noble F, Autiero M, Carmeliet P. Guidance of vascular and neural network formation. Curr Opin Neurobiol 2005; 15: 108–115.

29. Semenza GL, Wang GL. A Nuclear Factor Induced by Hypoxia via De Novo Protein Synthesis Binds to the Human Erythropoietin Gene Enhancer at a Site Required for Transcriptional Activation. Mol Cell Biol 1992; 12: 5447–5454.

30. Semenza GL, Agani F, Iyer N, Kotch L, Laughner E, Leung S, Yu A. Regulation of cardiovascular development and physiology by hypoxia-inducible factor 1. Ann NY Acad Sci 1999; 874: 262–268.

31. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992; 359: 843–845.

32. Chance B, Cohen P, Jobsis F, Schoener B. Intracellular oxidation-reduction states in vivo. Science 1962; 137: 499–508.

33. Nečas E. Patofyziologie zásobování organismu a jeho tkání kyslíkem. Praha: Avicenum 1982; 258 s.

34. Raleigh JA, Calkins-Adams DP, Rinker LH, Ballenger CA, Weissler MC, Fowler WC. Jr, Novotny DB, Varia MA. Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res 1998; 58: 3765–3768.

35. Lee YM, Jeong CH, Koo Y, Son MJ, Song HS, Bae K, Raleigh JA, Chung HY, Yoo MA, Kim KW. Determination of hypoxia region by hypoxia marker in developing mouse embryos in vivo: A possible signal for vessel development. Dev Dynamics, 2001; 220: 175–186.

36. Ferrara N, Kerbel, RS. Angiogenesis as a therapeutic target. Nature 2005; 438: 967–974.

37. Heinl-Green A, Radke PW, Munkonge FM, Frass O, Zhu J, Vincent K, Geddes DM, Alton EW. The efficacy of a ‘master switch gene’ HIF-1alpha in a porcine model of chronic myocardial ischaemia. Eur Heart J 2005; 26: 1327–1332.

38. Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004; 3: 391–400.

39. Kamba T, McDonald DM. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer 2007; 96: 1788–1795.

40. Hernandez-Pastor LJ, Ortega A, Garcia-Layana A, Giraldez J. Ranibizumab for neovascular age–related macular degeneration. Am. J. Health Syst. Pharm 2008; 65: 1805–1814.

41. Pourgholami MH, Morris DL. Inhibitors of vascular endothelial growth factor in cancer. Cardiovasc. Hematol Agents Med Chem 2008; 6: 343–347.

42. Sandberg JA, Sproul CD, Blanchard KS. Acute toxicology and pharmacokinetic assessment of a ribozyme (Angiozyme) targeting vascular endothelial growth factor receptor mRNA in the Cynomolgus monkey. Antisense Nucl Acid Drug Develop 2000; 10: 153–162.

Štítky
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management Dental Hygienist

Článok vyšiel v časopise

Journal of Czech Physicians

Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#