#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Examination of exhaled breath condensate in cystic fibrosis


Authors: Libor Fila;  Jaromír Musil
Authors place of work: Univerzita Karlova v Praze, 2. lékařská fakulta, Pneumologická klinika FN Motol
Published in the journal: Čas. Lék. čes. 2010; 149: 173-177

Summary

Examination of exhaled breath condensate belongs to experimental methods that are used in many pulmonary diseases and it can take part in the study of their pathophysiology. Its contribution to diagnostics and to monitoring of response to treatment is also evaluated. Many biomarkers of inflammation and oxidative stress were studied in exhaled breath condensate in cystic fibrosis. Examination of pH of exhaled breath condensate is considered to be useful in evaluation of inflammatory acidification of airways, together with evaluation of response to antibiotic treatment of pulmonary exacerbation, due to immediately accessible result. Other important biomarkers include 8-isoprostane and 3-nitrotyrosine as markers of oxidative stress (both with negative correlation with pulmonary function) and leukotriene B4 as marker of neutrophilic inflammation. Opposite to other pulmonary diseases, hydrogen peroxide does not belong to useful markers of oxidative stress in cystic fibrosis, due to abundant reduced thiols and glutathione peroxidase in sputum of these patients. Attempts to detect bacterial DNA in exhaled breath condensate in cystic fibrosis also failed. In spite of mentioned progress, examination of exhaled breath condensate remains a research method and it has not been introduced into clinical practice.

Key words:
cystic fibrosis, exhaled breath condensate, pathophysiology, diagnostics, therapy.


Zdroje

1. Boucher RC. New concepts of the pathogenesis of cystic fibrosis lung disease. Eur Respir J 2004; 23: 146–158.

2. de Winter-de Groot KM, van der Ent CK. Nitric oxide in cystic fibrosis. J Cyst Fibros 2005; 4 (Suppl 2): 25–29.

3. Freedman SD, Blanco PG, Zaman MM, et al. Association of cystic fibrosis with abnormalities in fatty acid metabolism. N Engl J Med 2004; 350: 560–569.

4. Kharitonov SA, Barnes PJ. Exhaled markers of pulmonary disease. Am J Respir Crit Care Med 2001; 163: 1693–1722.

5. Srbová M, Wilhelm J. Markery obsažené ve vydechovaném vzduchu při plicních onemocněních. Čas Lék čes 2003; 142: 140–143.

6. Montuschi P. Analysis of exhaled breath condensate in respiratory medicine: methodological aspects and potential clinical applications. Ther Adv Respir Dis 2007; 1: 5–23.

7. Griese M, Noss J, Schramel P. Elemental and ion composition of exhaled air condensate in cystic fibrosis. J Cyst Fibros 2003; 2: 136–142.

8. Horváth I, Hunt J, Barnes PJ, et al. ATS/ERS Task Force on Exhaled Breath Condensate. Exhaled breath condensate: methodological recommendations and unresolved questions. Eur Respir J 2005; 26: 523–548.

9. Tate S, MacGregor G, Davis M, et al. Airways in cystic fibrosis are acidified: detection by exhaled breath condensate. Thorax 2002; 57: 926–929.

10. Ojoo JC, Mulrennan SA, Kastelik JA, et al. Exhaled breath condensate pH and exhaled nitric oxide in allergic asthma and in cystic fibrosis. Thorax 2005; 60: 22–26.

11. Fila L, Musil J, Valentová Bartáková L, et al. Vliv terapie inhalačními kortikosteroidy na složení kondenzátu vydechovaného vzduchu u nemocných s cystickou fibrózou. Stud Pneumol Phthiseol 2008; 68: 6–9.

12. Carpagnano GE, Barnes PJ, Francis J, et al. Breath condensate pH in children with cystic fibrosis and asthma: a new noninvasive marker of airway inflammation? Chest 2004; 125: 2005–2010.

13. Balint B, Kharitonov SA, Hanazawa T, et al. Increased nitrotyrosine in exhaled breath condensate in cystic fibrosis. Eur Respir J 2001; 17: 1201–1207.

14. Corradi M, Montuschi P, Donnelly LE, et al. Increased nitrosothiols in exhaled breath condensate in inflammatory airway diseases. Am J Respir Crit Care Med 2001; 163: 854–858.

15. Marteus H, Tornberg DC, Weitzberg E, et al. Origin of nitrite and nitrate in nasal and exhaled breath condensate and relation to nitric oxide formation. Thorax 2005; 60: 219–225.

16. Grasemann H, Ioannidis I, Tomkiewicz RP, et al. Nitric oxide metabolites in cystic fibrosis lung disease. Arch Dis Child 1998; 78: 49–53.

17. Gaston B, Ratjen F, Vaughan JW, et al. Nitrogen redox balance in the cystic fibrosis airway: effects of antipseudomonal therapy. Am J Respir Crit Care Med 2002; 165: 387–390.

18. Dauletbaev N, Rickmann J, Viel K, et al. Antioxidant properties of cystic fibrosis sputum. Am J Physiol Lung Cell Mol Physiol 2005; 288: L903–L909.

19. Montuschi P, Kharitonov SA, Ciabattoni G, et al. Exhaled 8-isoprostane as a new non-invasive biomarker of oxidative stress in cystic fibrosis. Thorax 2000; 55: 205–209.

20. Lucidi V, Ciabattoni G, Bella S, et al. Exhaled 8-isoprostane and prostaglandin E(2) in patients with stable and unstable cystic fibrosis. Free Radic Biol Med 2008; 45: 913–919.

21. Carpagnano GE, Barnes PJ, Geddes DM, et al. Increased leukotriene B4 and interleukin-6 in exhaled breath condensate in cystic fibrosis. Am J Respir Crit Care Med 2003; 167: 1109–1112.

22. Fila L, Brázová J, Musil J. Vliv suplementace n-3 polynenasycenými mastnými kyselinami na složení kondenzátu vydechovaného vzduchu u nemocných s cystickou fibrózou. Stud Pneumol Phtiseol 2009; 69: 216–220.

23. Bodini A, D’Orazio C, Peroni D, et al. Biomarkers of neutrophilic inflammation in exhaled air of cystic fibrosis children with bacterial airway infections. Pediatr Pulmonol 2005; 40: 494–499.

24. Robroeks CM, Rosias PP, van Vliet D, et al. Biomarkers in exhaled breath condensate indicate presence and severity of cystic fibrosis in children. Pediatr Allergy Immunol 2008; 19: 652–659.

25. Esther CR, Alexis NE, Clas ML, et al. Extracellular Purines are Biomarkers of Neutrophilic Airway Inflammation. Eur Respir J 2008; 31: 949–956.

26. Esther CR Jr, Boysen G, Olsen BM, et al. Mass spectrometric analysis of biomarkers and dilution markers in exhaled breath condensate reveals elevated purines in asthma and cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2009; 296: L987–L993.

27. Worlitzsch D, Herberth G, Ulrich M, et al. Catalase, myeloperoxidase and hydrogen peroxide in cystic fibrosis. Eur Respir J 1998; 11: 377–383.

28. Jöbsis Q, Raatgeep HC, Schellekens SL, et al. Hydrogen peroxide and nitric oxide in exhaled air of children with cystic fibrosis during antibiotic treatment. Eur Respir J 2000; 16: 95–100.

29. Karakoc GB, Inal A, Yilmaz M, et al. Exhaled breath condensate MMP-9 levels in children with bronchiectasis. Pediatr Pulmonol 2009; 44: 1010–1016.

30. Gessner C, Kuhn H, Toepfer K, et al. Detection of p53 gene mutations in exhaled breath condensate of non-small cell lung cancer patients. Lung Cancer 2004; 43: 215–222.

31. Vogelberg C, Hirsch T, Rosen-Wolff A, et al. Pseudomonas aeruginosa and Burkholderia cepacia cannot be detected by PCR in the breath condensate of patients with cystic fibrosis. Pediatr Pulmonol 2003; 36: 348–352.

32. Čáp P, Pehal F. Vyšetření kondenzátu vydechovaného vzduchu u nemocných s astmatem a chronickou obstrukční plicní nemocí. Čas Lék čes 2004; 143: 742–746.

Štítky
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management Dental Hygienist
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#