#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Strategic dominance of the mucosal immune system in the defence and tolerance


Authors: Jiří Městecký 1,2,3,4;  Milan Raška 1,5
Authors place of work: University of Alabama at Birmingham, Department of Microbiology 1;  University of Alabama at Birmingham, Department of Medicine 2;  Univerzita Karlova v Praze, 1. lékařská fakulta, Ústav imunologie a mikrobiologie 3;  Akademie věd České republiky Praha, Mikrobiologický ústav 4;  Univerzita Palackého v Olomouci, Lékařská fakulta, Ústav imunologie 5
Published in the journal: Čas. Lék. čes. 2011; 150: 480-488
Category: Review Article

Summary

Mucosal immune system is functionally characterized by its ability to limit the access of environmental antigens such as food, airborne materials, and commensal microbes to the systemic immune compartment, leading to reduction in the magnitude of systemic immune responses. Mucosal immune system reacts at the site of antigen exposure and at anatomically distant mucosal sites by specific antibodies production and specific cellular immunity. The mucosal administration of neoantigen induces specific mucosal and systemic antibodies production and systemic effector T cells anergy accompanied by induction of regulatory T cells, phenomenon termed mucosal tolerance. Based on above observations, several studies test the ability to prevent some autoimmune diseases by mucosal administration of respective antigens but with little to no success. This review attempts to describe mechanisms involved in the induction of immune response and tolerance after immunization by mucosal routes – oral or intranasal administration. Further it aims to elucidate conditions critical for elicitation of mucosal tolerance.

Key words:
mucosal immune system, commensal microbiota; mucosal tolerance, oral tolerance, secretory IgA, epithelial cells.


Zdroje

1. Mestecky J, et al. Selective induction of an immune response in human external secretions by ingestion of bacterial antigen. J Clin Invest 1978; 61: 731–737.

2. Mestecky J, et al. Perspectives on mucosal vaccines: is mucosal tolerance a barrier? J Immunol 2007; 179: 5633–5638.

3. Savage DS. Mucosal Microbiota. In: Mestecky J, et al. Mucosal Immunology. Amsterdam, Boston: Elsevier Academic Press 2005; 19–34.

4. Orndorff PE, et al. Immunoglobulin-mediated agglutination of and biofilm formation by Escherichia coli K-12 require the type 1 pilus fiber. Infect Immun 2004; 72: 1929–1938.

5. Bollinger RR, et al. Human secretory immunoglobulin A may contribute to biofilm formation in the gut. Immunology 2003; 109: 580–587.

6. Frank DN, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 2007; 104: 13780–13785.

7. Gill SR, et al. Metagenomic analysis of the human distal gut microbiome. Science 2006; 312: 1355–1359.

8. Mestecky J, et al. Specific antibody activity, glycan heterogeneity and polyreactivity contribute to the protective activity of S-IgA at mucosal surfaces. Immunol Lett 2009; 124: 57–62.

9. Kiyono H, et al. The Mucosal Immune System. In Paul WE. Fundamental Immunology. Philadelphia: Wolters Kluwer / Lippincott Williams & Wilkins 2008; 983–1030.

10. Gordon J, et al. Functional evidence for a single endodermal origin for the thymic epithelium. Nat Immunol 2004; 5: 546–553.

11. Matsumoto K, et al. Liver organogenesis promoted by endothelial cells prior to vascular function. Science 2001; 294: 559–563.

12. Tlaskalova-Hogenova H, et al. Interaction of mucosal microbiota with the innate immune system. Scand J Immunol 2005; 62(Suppl 1): 106–113.

13. Fritz JH, et al. Innate immune recognition at the epithelial barrier drives adaptive immunity: APCs take the back seat. Trends Immunol 2008; 29: 41–49.

14. Cerutti A, et al. The biology of intestinal immunoglobulin A responses. Immunity 2008; 28: 740–750.

15. Kawai T, et al. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 2009; 21: 317–337.

16. Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 2008; 8: 411–420.

17. Stephens HA. MICA and MICB genes: can the enigma of their polymorphism be resolved? Trends Immunol 2001; 22: 378–385.

18. Wu Y, et al. Human gamma delta T cells: a lymphoid lineage cell capable of professional phagocytosis. J Immunol 2009; 183: 5622–5629.

19. Czerkinsky C, et al. Sublingual vaccination. Hum Vaccin 2011; 7: 110–114.

20. Kweon MN. Sublingual mucosa: A new vaccination route for systemic and mucosal immunity. Cytokine 2011; 54: 1–5.

21. Wold AE, et al. Secretory immunoglobulin A carries oligosaccharide receptors for Escherichia coli type 1 fimbrial lectin. Infect Immun 1990; 58: 3073–3077.

22. Novak J, et al. IgA nephropathy and Henoch-Schoenlein purpura nephritis: aberrant glycosylation of IgA1, formation of IgA1-containing immune complexes, and activation of mesangial cells. Contrib Nephrol 2007; 157: 134–138.

23. Renfrow MB, et al. Analysis of O-glycan heterogeneity in IgA1 myeloma proteins by Fourier transform ion cyclotron resonance mass spectrometry: implications for IgA nephropathy. Anal Bioanal Chem 2007; 389: 1397–1407.

24. Sun JB, et al. Cholera toxin B subunit: an efficient transmucosal carrier–delivery system for induction of peripheral immunological tolerance. Proc Natl Acad Sci USA 1994; 91: 10795–10799.

25. Sun JB, et al. Oral tolerance induction with antigen conjugated to cholera toxin B subunit generates both Foxp3+CD25+ and Foxp3-CD25- CD4+ regulatory T cells. J Immunol 2006; 177: 7634–7644.

26. Sun JB, et al. Treatment of experimental autoimmune encephalomyelitis by feeding myelin basic protein conjugated to cholera toxin B subunit. Proc Natl Acad Sci U S A 1996; 93: 7196–7201.

27. Lowney ED. Suppression of contact sensitization in man by prior feeding of antigen. J Invest Dermatol 1973; 61: 90–93.

28. Zinkernagel RM, et al. Antiviral immunity. Immunol Today 1997; 18: 258–260.

29. Altmeyer R, et al. Attenuated Mengo virus: a new vector for live recombinant vaccines. J Virol 1995; 69: 3193–3196.

30. Goossens PL, et al. Listeria monocytogenes: a live vector able to deliver heterologous protein within the cytosol and to drive a CD8 dependent T cell response. Biologicals 1995; 23: 135–143.

31. Castrucci MR, et al. Protection against lethal lymphocytic choriomeningitis virus (LCMV) infection by immunization of mice with an influenza virus containing an LCMV epitope recognized by cytotoxic T lymphocytes. J Virol 1994; 68: 3486–3490.

32. Dollenmaier G, et al. Membrane-associated respiratory syncytial virus F protein expressed from a human rhinovirus type 14 vector is immunogenic. Virology 2001; 281: 216–230.

33. Lee JS, et al. Viral vectors for use in the development of biodefense vaccines. Adv Drug Deliv Rev 2005; 57: 1293–1314.

34. Phillpotts RJ, et al. Intranasal immunisation with defective adenovirus serotype 5 expressing the Venezuelan equine encephalitis virus E2 glycoprotein protects against airborne challenge with virulent virus. Vaccine 2005; 23: 1615–1623.

35. Ada G. Overview of vaccines and vaccination. Mol Biotechnol 2005; 29: 255–272.

36. Czerkinsky C, et al. Topical immunization strategies. Mucosal Immunol 2010; 3: 545–555.

Štítky
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management Dental Hygienist
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#