Colorectal cancer and canonical Wnt signalling pathway
Authors:
Martin Moravec
Authors place of work:
Univerzita Karlova v Praze, 3. lékařská fakulta, II. interní klinika FNKV, Fyziologický ústav AV ČR, Praha
Published in the journal:
Čas. Lék. čes. 2012; 151: 335-342
Category:
Review Article
Summary
Colorectal cancer is among the most frequent malignancies in the economically developed part of the world including the Czech Republic. From the molecular biological point of view, the development of colorectal cancer is in most cases linked to the pathologically activated canonical Wnt signalling pathway. The aim of this review is to present this intercellular signalling pathway, its role in the colorectal carcinogenesis and possible therapeutic implications according to our current knowledge.
Key words:
colorectal cancer, Wnt signalling pathway, tumorigenesis.
Zdroje
1. International variations and trends AND Colon and rectum. In: World Cancer Research Fund, American Institute for Cancer Research. Food, nutrition and physical activity, and the prevention of cancer: a global perpective. Washington DC: AICR 2007; 20, 280–288.
2. Dušek L, et al. Populační odhady počtu nemocných s kolorektálním karcinomem v ČR – jeden z nástrojů hodnocení včasné diagnostiky časných stadií a rekurence onemocnění. Farmakoterapie 2009; 5: 11–20.
3. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–767.
4. Najdi R, et al. Wnt signaling and colon carcinogenesis: beyond APC. J Carcinog 2011; 10: 5.
5. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004; 20: 781–810.
6. MacDonald BT, et al. Wnt/ß-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17: 9–26.
7. van Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development 2009; 136: 3205–3214.
8. Verheyen EM, Gottardi CJ. Regulation of Wnt/ß-catenin signaling by protein kinases. Dev Dyn 2010; 239: 34–44.
9. Doucas H, et al. Changes in the Wnt signalling pathway in gastrointestinal cancers and their prognostic significance. Eur J Cancer 2005; 41: 365–379.
10. Nusse R. Cancer. Converging on beta-catenin in Wilms tumor. Science 2007; 316: 988–989.
11. Polakis P. The many ways of Wnt in cancer. Curr Opin Genet Dev 2007; 17: 45–51.
12. Gallagher JC, Sai AJ. Molecular biology of bone remodeling: implications for new therapeutic targets for osteoporosis. Maturitas 2010; 65: 301–307.
13. Vlad A, et al. The first five years of the Wnt targetome. Cell Signal 2008; 20: 795–802.
14. van Amerongen R, et al. Alternative Wnt signaling is initiated by distinct receptors. Sci Signal 2008; 1: re9.
15. Kikuchi A, et al. Multiplicity of interactions of Wnt proteins and their receptors. Cell Signal 2007; 19: 659–671.
16. Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 2009; 10: 468–477.
17. Gao C, Chen YG. Dishevelled: The hub of Wnt signaling. Cell Signal 2010; 22: 717–727.
18. Caldwell GM, et al. Reorganisation of Wnt-response pathways in colorectal tumorigenesis. Br J Cancer 2008; 98: 1437–1442.
19. Toualbi K, et al. Physical and functional cooperation between AP-1 and ß-catenin for the regulation of TCF-dependent genes. Oncogene 2007; 26: 3492–3502.
20. Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors and multiple transcription factors. J Biol Chem 2006; 281: 22429–22433.
21. Kohn AD, Moon RT. Wnt and calcium signaling: ß-catenin-independent pathways. Cell Calcium 2005; 38: 439–446.
22. Veeman MT, et al. A second canon: functions and mechanisms of ß-catenin-independent Wnt signaling. Dev Cell 2003; 5: 367–377.
23. Seifert JR, Mlodzik M. Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet 2007; 8: 126–138.
24. Semenov MV, et al. SnapShot: noncanonical Wnt signaling pathways. Cell 2007; 131: 1378.
25. van den Brink GR, Offerhaus GJ. The morphogenetic code and colon cancer development. Cancer Cell 2007; 11: 109–117.
26. Steinhauer J, Treisman JE. Lipid-modified morphogens: functions of fats. Curr Opin Genet Dev 2009; 19: 308–314.
27. van den Heuvel M, et al. Mutations in the segment polarity genes wingless and porcupine impair secretion of the wingless protein. EMBO J 1993; 12: 5293–5302.
28. Leronowicz MJ, Korswagen HC. Sailing with the Wnt: charting the Wnt processing and secretion route. Exp Cell Res 2009; 315: 2683–2689.
29. Port F, Basler K. Wnt trafficking: new insights into Wnt maturation, secretion and spreading. Traffic 2010; 11: 1265–1271.
30. Mikels AJ, Nusse R. Wnts as ligands: processing, secretion and reception. Oncogene 2006; 25: 7461–7468.
31. Takei Y, et al. Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development 2004; 131: 73–82.
32. Korkut C, et al. Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell 209; 139: 393–404.
33. Panáková D, et al. Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 2005; 435: 58–65.
34. Neumann S, et al. Mammalian Wnt3a is released on lipoprotein particles. Traffic 2009; 10: 334–343.
35. Bovolenta P, et al. Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci 2008; 121: 737–746.
36. Cadigan KM, Liu YI. Wnt signaling: complexity at the surface. J Cell Sci 2006; 119: 395–402.
37. Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004; 303: 1483–1487.
38. Schneikert J, Behrens J. The canonical Wnt signalling pathway and its APC partner in colon cancer development. Gut 2007; 56: 417–425.
39. Lee E, et al. The role of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol 2003; 1: E10.
40. Chia IV, Constantini F. Mouse axin and axin2/conductin proteins are functionally equivalent in vivo. Mol Cell Biol 2005; 25: 4371–4376.
41. Lustig B, et al. Negative feedback loop of Wnt signaling through upregulation of Conductin/Axin2 in colorectal and liver tumors. Mol Cell Biol 2002; 22: 1184–1193.
42. Mosimann C, et al. Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nat Rev Mol Cell Biol 2009; 10: 276–286.
43. Arce L, et al. Diversity of LEF/TCF action in development and disease. Oncogene 2006; 25: 7492–7504.
44. Roose J, et al. Synergy between tumor suppressor APC and the beta-catenin-TCF4 target TCF1. Science 1999; 285: 1923–1926.
45. Aguilera O, et al. Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene 2006; 25: 4116–4121.
46. Tetsu O, McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999; 398: 422–426.
47. Arber N, et al. Increased expression of Cyclin D1 is an early event in multistage colorectal carcinogenesis. Gastroenterology 1996; 110: 669–674.
48. Zhang T, et al. Evidence that APC regulates survivin expression: possible mechanism contributing to the stem cell origin of colon cancer. Cancer Res 2001; 61: 8664–8667.
49. Brabletz T, et al. Beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 155(1999): 1033–1038.
50. Kim TH, et al. Beta-catenin activates the growth factor endothelin-1 in colon cancer cells. Oncogene 2005; 24: 597–604.
51. Batlle E, et al. Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 2002; 111: 251–263.
52. van de Wetering M, et al. The ß-catenin/TFC4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 2002; 111: 241–250.
53. Vermeulen L, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 2010; 12: 468–476.
54. de Sousa EM, et al. Targeting Wnt signaling in colon cancer stem cells. Clin Cancer Res 2011; 17: 647–653.
55. Munkholm P. Review article: the incidence and prevalence of colorectal cancer in inflammatory bowel disease. Aliment Pharmacol Ther 2001; 18 Suppl 2: 1–5.
56. Eaden JA, et al. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 2001; 48: 526–535.
57. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell 1996; 87: 159–170.
58. Heinen CD, et al. DNA repair and tumorigenesis: lessons from hereditary cancer syndromes. Cancer Biol Ther 2002; 1: 477–485.
59. Komarova NL, et al. Dynamics of genetic instability in sporadic and familial colorectal cancer. Cancer Biol Ther 2002; 1: 685–692.
60. Choi PM, Zelig MP. Similarity of colorectal cancer in Crohnęs disease and ulcerative colitis: implications for carcinogenesis and prevention. Gut 1994; 35: 950–954.
61. O’Sullivan JN, et al. Chromosomal instability in ulcerative colitis is related to telomere shortening. Nat Genet 2002; 32: 280–284.
62. Harpaz N, Polydorides AD. Colorectal dysplasia in chronic inflammatory bowel disease: pathology, clinical implications, and pathogenesis. Arch Pathol Lab Med 2010; 134: 876–895.
63. Watson AJ, Collins PD. Colon cancer: a civilization disorder. Dig Dis 2011; 29: 222–228.
64. Fodde R, et al. APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 2001; 1: 55–67.
65. Grady WM. Genomic instability and colon cancer. Cancer Metastasis Rev 2004; 23: 11–27.
66. Thorstensen L, Lind GE, et al. Genetic and epigenetic changes of components affecting the Wnt pathway in colorectal carcinomas stratisfied by microsatellite instability. Neoplasia 2005; 7: 99–108.
67. Dhir M, et al. Epigenetic regulation of WNT signaling pathways genes in inflammatory bowel disease (IBD) associated neoplasia. J Gastrointest Surg 2008; 12: 1745–1753.
68. Rudolph KL, et al. Telomere dysfunction and DNA damage checkpoints in diseases and cancer of the gastrointestinal tract. Gastroenterology 2009; 137: 754–762.
69. Watson AJ. Apoptosis and colorectal cancer. Gut 2004; 53: 1701–1709.
70. Oving IM, Clevers HC. Molecular causes of colon cancer. Eur J Clin Invest 2002; 32: 448–457.
71. Heinen CD, et al. Microsatellite instability in colorectal adenocarcinoma cell lines that have full-lenght adenomatous polyposis coli protein. Cancer Research 1995; 55: 4797–4799.
72. Sparks AB, et al. Mutational analysis of the APC/ß-catenin/Tcf pathway in colorectal cancer. Cancer Res 1998; 58: 1130–1134.
73. Miyaki M, et al. Frequent mutation of ß-catenin and APC genes in primary colorectal tumors from patients with hereditary nonpolyposis colorectal cancer. Cancer Res 1999; 59: 4506–4509.
74. Lammi L, et al. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet 2004; 74: 1043–1050.
75. Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell 2000; 103: 311–320.
76. Suzuki H, et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 2004; 36: 417–422.
77. Caldwell GM, et al. The Wnt antagonist sFRP1 in colorectal tumorigenesis. Cancer Res 2004; 64: 883–888.
78. Taniguchi H, et al. Frequent epigenetic inactivation of Wnt inhibitory factor-1 in human gastrointestinal cancers. Oncogene 2005; 24: 7946–7952.
79. Jen J, et al. Molecular determinants of dysplasia in colorectal lesions. Cancer Res 1994; 54: 5523–5526.
80. Ijssennagger N, et al. Dietary haem stimulates epithelial cell turnover by downregulating feedback inhibitors of proliferation in murine colon. Gut 2011: (Epub ahead of print).
81. Duval A, et al. Frequent frameshift mutations of the TCF-4 gene in colorectal cancers with microsatellite instability. Cancer Res 1999; 59: 4213–4215.
82. Shimizu Y, et al. Frequent alterations in the Wnt signaling pahtway in colorectal cancer with microsatellite instability. Genes Chromosomes Cancer 2002; 33: 73–81.
83. Waterman ML. Lymphoid enhancer factor/T cell factor expression in colorectal cancer. Cancer Metastasis Rev 2004; 23: 41–52.
84. Duval A, et al. The human T-cell transcription factor-4 gene: structure, extensive characterization of alternative splicings, and mutational analysis in colorectal cancer cell lines. Cancer Res 2000; 60: 3872–3879.
85. Metcalfe C, Ibrahim AE, et al. Cancer Res 2010; 70: 6629–6638.
86. Korkaya H, Wicha MS. Cancer stem cells: nature versus nurture. Nat Cell Biol 2010; 12: 419–421.
87. Chan TL, et al. BRAF and KRAS mutations in colorectal hyperplastic polyps and serrated adenomas. Cancer Res 2003; 63: 4878–4881.
88. Batlle E, et al. EphB receptor activity suppresses colorectal cancer progression. Nature 2005; 435: 1126–1130.
89. Clevers H, Batlle E. EphB/EphrinB receptors and Wnt signaling in colorectal cancer. Cancer Res 2006; 66: 2–5.
90. Yamamoto H, et al. Somatic frameshift mutation in DNA mismatch repair and proapoptosis genes in hereditary nonpolyposis colorectal cancer. Cancer Res 1998; 58: 997–1003.
91. Grady WM, et al. Mutation of the type II transforming growth factor–beta receptor is coincident with the transformation of human colon adenomas to malignant carcinomas. Cancer Res 1998; 58: 3101–3104.
92. Pritchard CC, Grady WM. Colorectal cancer molecular biology moves into clinical practice. Gut 2011; 60: 116–129.
93. Ondřichová L. Metastazující kolorektální karcinom – nic není jako dřív. Medical Tribune 2011; 7(25): B2,B4.
94. Vyzula R, et al. Zhoubný novotvar kolorekta (C18–20). Zhoubný novotvar řiti a řitního kanálu (C21). In: Vyzula R, et al. Zásady cytostatické léčby maligních onkologických onemocnění. 14. vydání. Brno: KAPCZ 2012; 52–66.
95. Barker N, Clevers H. Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov 2006; 5: 997–1014.
96. Gehrke I, et al. Targeting the Wnt/beta-catenin/TCF/LEF1 axis in solid and haematologecal cancers: Multiplicity of therapeutic options. Eur J Cancer 2009; 45: 2759–2767.
97. He B, et al. Blockade of Wnt-1 signaling induces apoptosis in human colorectal cancer cells containing downstream mutations. Oncogene 2005; 24: 3054–3058.
98. Dihlmann S, et al. Wnt/beta-catenin-pathway as a molecular target for future anti-cancer therapeutics. Int J Cancer 2005; 113: 515–524.
99. Lepourcelet M, et al. Small-molecule antagonists of the oncogenic TCF/beta-catenin protein complex. Cancer Cell 2004; 5: 91–102.
100. Shan J, et al. Identification of specific inhibitor of the Dishevelled PDZ domain. Biochemistry 2005; 44: 15495–15503.
101. Muller T, et al. Regulation of epithelial cell migration and tumor formation by beta–catenin signaling. Exp Cell Res 2002; 280: 119–133.
102. Wang MH, et al. Potential therapeutics specific to c-MET/RON receptor thyrosin kinases for molecular targeting in cancer therapy. Acta Pharmacol Sin 2010; 31: 1181–1188.
103. Bertagnolli MM, et al. Five year efficacy and safety analysis of the adenoma prevention with celecoxib trial. Cancer Prev Res (Phila) 2009; 2: 310–321.
104. Rothwell PM, et al. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet 2011; 377: 31–41.
105. Cook NR, et al. Low-dose aspirin in the primary prevention of cancer: the Womenęs Health Study: a randomized controlled trial. JAMA 2005; 294: 47–55.
106. Cuzick J, et al. Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol 2009; 10: 501–507.
107. Bordonaro M, et al. Butyrate-induced apoptotis cascade in colonic carcinoma cells: modulation of the ß-Catenin-Tcf pathway and concordance with effects of sulindac and trichostatin A but not curcumin. Cell Growth Differ 1999; 10: 713–720.
108. Bordonaro M, et al. Cell type – and promoter-dependent modulation of the Wnt signaling pathway by sodium butyrate. Int J Cancer 2002; 97: 42–51.
109. Lazarova DL, et al. Linear relationship between Wnt activity levels and apoptosis in colorectal carcinoma cells exposed to butyrate. Int J Cancer 2004; 110: 523–531.
Štítky
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management Dental HygienistČlánok vyšiel v časopise
Journal of Czech Physicians
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- What Effect Can Be Expected from Limosilactobacillus reuteri in Mucositis and Peri-Implantitis?
Najčítanejšie v tomto čísle
- Deep calf vein thrombosis
- Acute febrile neutrophilic dermatosis – Sweet syndrome
- Eutreated and maltreated girls – childhood, partnership, maternity – a longitudinal study
- Colorectal cancer and canonical Wnt signalling pathway