UHMWPE – polyethylene for articulating surfaces of joint replacements
Authors:
David Pokorný; Antonín Sosna; Miroslav Šlouf; Petr Fulín; Jan Štefan; Ivan Landor
Authors place of work:
I. ortopedická klinika 1. LF UK a FN Motol
1; Ústav makromolekulární chemie AV ČR, v. v. i.
2
Published in the journal:
Čas. Lék. čes. 2016; 155: 433-437
Category:
Review Articles
Summary
The introduction of artificial joint replacement constitutes a breakthrough method of treatment for severe joint disease for millions of people worldwide.
Annual increase in the number of primary replacement and also increasing demands on the longevity of joint replacements are leading to increased demands on wear resistance of articular surface. Ultra-high molecular weight polyethylene (UHMWPE) is still most commonly used material for the production of articular surface. It was introduced into clinical practice in the 60s of the 20th century. Physical-chemical properties of UHMWPE are subject of many studies. These lead gradually to its improvement in terms of higher wear resistance while maintaining the stability against oxidative degradation.
The main objective of this review is to summarize the basic properties of high-molecular weight polyethylene which are important for its use in orthopaedic practice and to explain the possibilities of its modification and sterilization. Knowledge of the latest trends about this material helps to orthopaedic surgeons get oriented in the issues and then to choose for their patients implants with the highest implant longevity.
Keywords:
total joint replacement, UHMWPE, ultra-high molecular weight polyethylene, vitamin E, ethylenoxide, annealing, remelting
Zdroje
1. Collier JP, Sperling DK, Currier JH et al. Impact of gamma sterilization on clinical performance of polyethylene in the knee. J Arthropl 1996; 11: 377–389.
2. Dumbleton JH. Highly crosslinked and annealed UHMWPE. In: Kurtz SM (ed.). UHMWPE Biomaterials Handbook (2nd edition). Elsevier – Academic Press, London, 2009: 212–217.
3. Fulín P, Pokorný D, Šlouf M et al. Metoda MORF pro sledování velikostí a tvarů otěrových mikro- a nanočástic UHMWPE v periprotetických tkáních. Acta Chir Orthop Traumatol Cech 2011; 78: 131–137.
4. Chiesa R, Tanzi MC, Alfonsi S et al. Enhanced wear performance of highly crosslinked UHMWPE for artificial joints. J Biomed Mater Res 2000; 50: 381–387.
5. Kurtz SM. Contemporary total hip arthroplasty: hard-on-hard bearings and highly crosslinked UHMWPE. In: Kurtz SM (ed.). UHMWPE Biomaterials Handbook (2nd edition). Elsevier – Academic Press, London, 2009: 55–79.
6. Kurtz SM. Vitamin-E-blended UHMWPE biomaterials. In: Kurtz SM (ed.). UHMWPE Biomaterials Handbook (2nd edition). Elsevier – Academic Press, London, 2009: 237–246.
7. McKee GK, Watson-Farrar J. Replacement of arthritic hips by the McKee-Farrar prosthesis. J Bone Jt Surg 1966; 48-B: 245–259.
8. McKellop HA, Shen FW, Lu B et al. Effect of sterilization method and other modifications on the wear resistance of acetabular cups made of ultra-high molecular weight polyethylene. A Hip-Simulator Study. J Bone Jt Surg 2000; 82-A: 1708–1725.
9. Morrison ML, Jani S. Evaluation of sequentially crosslinked ultra-high molecular weight polyethylene. J Biomed Mater Res B Appl Biomater 2009; 90: 87–100.
10. Oonishi H, Kadoya Y. Wear of high-dose gamma-irradiated polyethylene in total hip replacements. J Orthop Sci 2000; 5: 223–228.
11. Oral E. Highly crosslinked UHMWPE doped with vitamin E. In: Kurtz SM (ed.). UHMWPE Biomaterials Handbook (2nd edition). Elsevier – Academic Press, London, 2009: 221–233.
12. Pokorný D, Fulín P, Šlouf M et al. Polyetheretherketone (PEEK). Part II: Application in clinical practice. Acta Chir Orthop Traumatol Cech 2010; 77: 470–478.
13. Pokorný D, Šlouf M, Dybal J et al. New metod for quantification of UHMWPE wear particles around joint replacements. Acta Chir Orthop Traumatol Cech 2009; 76: 374–381.
14. Pokorný D, Šlouf M, Veselý F et al. Distribuce otěrových částic UHMWPE v periprotetických tkáních u TEP kyčelního kloubu. Acta Chir Orthop Traumatol Cech 2010; 77: 87–92.
15. Premnath V, Harris WH, Jasty M, Merrill EW. Gamma sterilization of UHMWPE articular implants: an analysis of the oxidation problem. Ultra high molecular weight polyethylene. Biomaterials 1996; 17: 1741–1753.
16. Ring P A. Complete replacement arthroplasty of the hip by the ring prosthesis. J Bone Jt Surg 1968; 50-B: 720–731.
17. Shikata T, Oonishi H, Hashimato Y et al. Wear resistance of irradiated UHMW polyethylenes to Al2O3 ceramics in total hip prostheses. Transactions of the 3rd annual meeting of the Society for Biomaterials 1977; 118.
18. Sosna A, Radonský T, Pokorný D et al. Polyetylenová choroba. Acta Chir Orthop Traumatol Cech 2003; 70: 6–16.
19. Šlouf M, Eklová S, Kumstátová J et al. Isolation, characterization and quantification of polyethylene wear debris from periprosthetic tissues around total joint replacements. Wear 2007; 262: 1171–1181.
20. Šlouf M, Mikešová J, Fencl J et al. Impact of dose-rate on rheology, structure and wear of irradiated UHMWPE. J Macromol Sci Phys 2009; 48: 587–603.
21. Šlouf M, Pokorný D, Entlicher G et al. Quantification of UHMWPE wear debris in periprosthetic tissues of hip arthroplasty: description of a new method based on IR and comparison with radiographic appearance. Wear 2008; 265: 674–684.
22. Šlouf M, Synková H, Baldrian J et al. Structural changes of UHMWPE after e-beam irradiation and thermal treatment. J Biomed Mater Res B Appl Biomater 2008; 85: 240–251.
23. Waugh W, Charnley J. The Man and the Hip. Springer, New York, 1990.
Štítky
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management Dental HygienistČlánok vyšiel v časopise
Journal of Czech Physicians
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- What Effect Can Be Expected from Limosilactobacillus reuteri in Mucositis and Peri-Implantitis?
Najčítanejšie v tomto čísle
- Avascular necrosis of the femoral head
- Femoroacetabular impingement − treatment options
- Rehabilitation after total knee and hip arthroplasty
- Limb shortening in the management of leg length discrepancy