A horizontal transmission of genetic information and its importance for development of antibiotics resistance
Authors:
Vladimír Bencko 1; Petr Šíma 2
Authors place of work:
Ústav hygieny a epidemiologie, 1. LF UK a VFN v Praze
1; Mikrobiologický ústav AV ČR, v. v. i.
2
Published in the journal:
Čas. Lék. čes. 2018; 157: 141-145
Category:
Summary
Genetic information is transmitted among organisms through two pathways – vertically from generation to generation (from parents to progeny) and horizontally (laterally) by direct exchange of genetic material across species barriers. These are primarily prokaryotes, in which the exchange of genes or whole gene segments by horizontal transmission is quite common. They can dynamically and in a relatively short time generate highly diverse genomes, which does not allow the vertical transmission. As a result, prokaryotes can rapidly acquire new properties such as virulence and pathogenicity as well as resistance to toxins, including antibiotics, by which they increase their adaptability. Therefore, reinfection-resistant microorganisms are always more difficult to treat than infections caused by non-resistant bacteria.
Antibiotic resistance today is a global problem of health care service. Not only does the number of diseases caused by resistant pathogenic strains of bacteria increase, but also the cost of treatment increases disproportionately, the length of hospitalization is prolonged, and mortality is often rising. Therefore, when indicating antibiotic therapy, it is important to keep in mind that both overuse and abuse of antibiotics contribute to the spread of antibiotic resistance genes. This is equally true for antibiotic applications in veterinary medicine, agriculture, including aquacultures, or in the food industry.
Keywords:
horizontal transmission of genetic information, endosymbiosis, antibiotic resistance, risks of the emergence and spread of antibiotic resistance, prevention of antibiotic resistance
Zdroje
1. Ainsworth GC. Introduction of the History of Mycology. Cambridge University Press, 1976.
2. De Bary HA. Die Erscheinung der Symbiose. Verlag von Karl J. Trübner, Strasbourg, 1879.
3. Mereschkowski C. Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25; 1905: 593–604.
4. Mereschkowsky C. Theorie der zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre von der Entstehung der Organismen. Biol Centralbl 1910; 30: 353–367.
5. Merezhkovsky KS. La plante considérée comme un complexe symbiotique. Bull Soc Sci Natur l’Ouest France 1920; 6: 1798.
6. Wallin IE. Symbionticism and the Origin of Species. Bailliere, Tindall and Cox, London, 1927; 171.
7. Wallin IE. Origin of mitochondria from bacterial endosymbionts. In: Symbionticism and the Origin of Species. Bailliere, Tindall and Cox, London, 1927.
8. Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: The Primary Kingdoms. Proc Natl Acad Sci USA 1977; 74: 5088–5090.
9. Woese CR, Fox GE. The concept of cellular evolution. J Mol Evol 10; 1977: 1–6.
10. Sagan L. On the origin of mitosing cells. J Theoret Biol 1967; 14: 225–274.
11. Margulis L. Symbiosis in cell evolution. Freeman WH, New York, 1993.
12: James J. Miescher’s discoveries of 1869. A centenary of nuclear chemistry. J Histochem Cytochem 1970; 18: 217–219.
13. Dahm R. Friedrich Miescher and the discovery of DNA. Dev Biol 2005; 278: 274–288.
14. Avery OT, MacLeod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J Exp Med 1944; 79: 137–158.
15. Griffith F. The significance of pneumococcal types. J Hyg 1928; 27: 113–159.
16. Brinster, RL, Braun RE, Lo D et al. Targeted correction of a major histocompatibility class II E alpha gene by DNA microinjected into mouse eggs. Proc Natl Acad Sci USA 1989; 86: 7087–7091.
17. Choi I-G, Kim S-H. Global extent of horizontal gene transfer. Proc Nat Acad Sci USA 2007; 104: 4489–4494.
18. Li Z-W, Shen Y-H, Xiang Z-H, Zhang Z. Pathogen-origin horizontally transferred genes contribute to the evolution of lepidopteran insects. BMC Evol Biol 2011; 11: doi: 10.1186/1471-2148-11-356.
19. Lorenz MG, Wackernagel W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 1994; 58: 563–602.
20. Ochman H, Lerat E, Daubin V. Examining bacterial species under the specter of gene transfer and exchange. Proc Natl Acad Sci USA 2005,102: 6595–6599.
21. Fernández-Gómez B, Fernàndez-Guerra A, Casamayor EO et al. Patterns and architecture of genomic islands in marine bacteria. BMC Genomics 2012; 13: 347.
22. Hacker J., Blum-Oehler G, Mühldorfer I, Tschäpe H. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 1997; 23: 1089–1097.
23. Davidson J. Genetic exchange between bacteria in the environment. Plasmid 1999; 42: 73–91.
24. Hall RM, Collis CM. Mobile gene cassettes and integrons: Capture and spread of genes by site-specific recombination. Mol Microbiol 1995; 15: 593–600.
25. Hall R, Collis C, Partridge S et al. Mobile gene cassettes and integrons in evolution. Ann NY Acad Sci 1999; 870: 68–80.
26. Vogan AA, Higgs PG. The advantages and disadvantages of horizontal gene transfer and the emergence of the first species. Biol Direct 2011; 6: 1.
27. Lederberg J, Tatum EL. Gene recombination in Escherichia coli. Nature 1946; 158: 558.
28. Tatum EL, Lederberg J. Gene recombination in the bacterium Escherichia coli. J Bacteriol 1947; 53: 673–684.
29. Burrus V, Waldor MK. Shaping bacterial genomes with integrative and conjugative elements. Res Microbiol 2004; 155: 376–386.
30. Zinder ND, Lederberg J. Genetic exchange in Salmonella. J Bacteriol 1952; 64: 679–699.
31. McClintock B. The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. Genetics 1938; 23: 315–376.
32. McClintock B. The stability of broken ends of chromosomes in Zea mays. Genetics 1941; 26: 234–282.
33. Kondo N, Ijichi N, Shimada M, Fukatsu T. Prevailing triple infection with Wolbachia in Callosobruchus chinensis (Coleoptera: Bruchidae). Mol Ecol 2002, 11: 167–180.
34. Grimble GK. Why are dietary nucleotides essential nutrients, Brit J Nutr 1996; 76: 475–478.
35. Šíma P. Význam nukleotidů jako složky výživy pro růst, regeneraci a imunitu, Interní medicína 2008; 10: 555–557.
36. Vuillemin P. Antibiose et symbiose. C R Assoc Fr Acad Sci 1889; 2: 525–543.
37. Waksman SA. The microbiology of soil and the antibiotics. In: Gladston I (ed.): The impact of the antibiotics on medicine and society. International Universities Press, New York, 1958.
38. D’Costa VM, King CE, Kalan L et al. Antibiotic resistance is ancient. Nature 2011; 477: 457–461.
39. Wright GD, Poinar H. Antibiotic resistance is ancient: Implications for drug discovery. Trends Microbiol 2012; 20 (4): 157–159.
40. Santiago-Rodriguez TM, Fornaciari, G, Luciani S et al. Gut Microbiome of an 11th Century A.D. Pre-columbian andean mummy. PLoS One 2015; 10: e0138135.
41. Emmerich R, Löw O. Bakteriolytische Enzyme als Ursache der erworbenen Immunität und die Heilung von Infektionskrankheiten durch dieselben. Zeitschr Hyg 1899; 31: 1–65.
42. Tiberio V. Sugli estratti di alcune muffe. Ann Igiene Speriment 1895; 5: 91–103.
43. Fleming A. Penicillin: The Robert Campbell Oration. Ulster Med J 1944; 13: 95–122.
44. O’Brien TF, del Pilar Pla M, Mayer KH et al. Intercontinental spread of a new antibiotic resistance gene on an epidemic plasmid. Science 1985; 230: 67–88.
45. Barber M, Rozwadovska-Dowzenko M. Infection by penicillin-resistant staphylococci. Lancet 1948; 255: 641–644.
46. Shanson DC. Short-course treatment of streptococcal endocarditis. J Antimicrob Chemother 1981; 8: 427–428.
47. Jing C, Michel FC jr., Sreevatsan S et al. Occurrence and persistence of erythromycin resistance genes (ERM) and tetracycline resistance genes (TET) in waste treatment systems on swine farms. Microbial Ecol 2010; 60: 479–486.
48. Kaplan T. The role of horizontal gene transfer in antibiotic resistance. Eukaryon 2014; 10: 80–81.
49. Bencko V, Šíma P. Incidence of allergy and atopic disorders and Hygiene Hypothesis. Clin Oncol 2017: 2: 1.
Štítky
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management Dental HygienistČlánok vyšiel v časopise
Journal of Czech Physicians
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- What Effect Can Be Expected from Limosilactobacillus reuteri in Mucositis and Peri-Implantitis?
Najčítanejšie v tomto čísle
- Periodic fevers and other autoinflammatory diseases
- Lymph node syndrome associated with cat scratch disease in children and adults
- Celiac disease in children and adolescents
- A horizontal transmission of genetic information and its importance for development of antibiotics resistance