Searching for genetic variants associated with thrombophilia
Authors:
Petr Vrtěl 1; Luděk Slavík 2; Radek Vodička 1; Martin Procházka 1; Jana Procházková 2; Radek Vrtěl 1; Jana Úlehlová 2; Peter Rohoň 1; Júlia Štellmachová 1
Authors place of work:
Ústav lékařské genetiky LF UP a FN Olomouc
1; Hematoonkologická klinika LF UP a FN Olomouc
2
Published in the journal:
Čas. Lék. čes. 2019; 158: 28-32
Category:
Review Article
Summary
Thrombotic states are inherited or acquired predisposition for thrombosis in the human vascular system. Nowadays Leiden mutation and mutation in prothrombin G20210A contributing to congenital thrombophilia are routinely tested. These mutations have a high prevalence in the population. Congenital deficiencies of protein S, protein C and antithrombin III are rare thrombophilia with lower population frequency, but higher risk of thromboembolic event. The genetic causes are mutations in the genes, which encode these proteins.
The choice of proper molecular genetic testing depends on the difference in the detection of well-known single nucleotide polymorphism or unknown/rare variant. For the detection of causative variant FV Leiden and prothrombin G20210A are mostly used PCR-RFLP, reverse Strip Assay®, allele-specific PCR, TaqMan real-time PCR and SNaPshot®. Precise patient selection should precede the genetic testing of rare variants in anticoagulant proteins. It is appropriate to use methodology of massive parallel sequencing supplemented by a methodology for the detection of larger gene rearrangements – MLPA. We are successfully employing this approach in our institute. This methodology is faster with larger analytic capacity compared to commonly used direct sequencing by Sanger method.
Keywords:
thrombophilia – FV Leiden – prothrombin G20210A – protein S deficiency – Protein C deficiency – antithrombin III deficiency – molecular genetic testing
Zdroje
- Lozano R, Naghavi M, Foreman K et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet 2012; 380: 2095–2128.
- Souto JC, Almassy L, Borell M et al. Genetic susceptibility to thrombosis and its relationship to physiological risk factors: the GAIT study. Genetic Analysis of Idiopathic Thrombophilia. Am J Hum Genet 2000; 67(6): 1452–1459.
- Dahlbäck B. Advances in understanding pathogenic mechanisms of thrombophilic disorders. Blood 2008; 112: 19–27.
- Bereczky Z, Gindele, R, Speker M et al. Deficiencies of the natural anticoagulants–novel clinical laboratory aspects of thrombophilia testing. Ejifcc 2016; 27(2): 130–146.
- García de Frutos P, Fuentes-Prior P, Hurtado B et al. Molecular basis of protein S deficiency. Thromb Haemost 2007; 98(3): 543–556.
- Mateo J, Oliver A, Borell M et al. Laboratory Evaluation and Clinical Characteristics of 2,132 Consecutive Unselected Patients with Venous Thromboembolism–Results of the Spanish Multicentric Study on Thrombophilia (EMET*-Study). Thromb Haemost 1997; 77(3): 444–451.
- Caspers M, Pavlova A, Driesen J et al. Deficiencies of antithrombin, protein C and protein S – Practical experience in genetic analysis of a large patient cohort. Thromb Haemost 2012; 108(2): 247–257.
- Artoni A, Passamonti SM, Edefonti A et al. Antithrombotic prophylaxis in a patient with nephrotic syndrome and congenital protein S deficiency. Ital J Pediat 2016; 42(1): 22.
- Cisneros GS, Khatib Z. Rivaroxaban prophylaxis in severe congenital protein C deficiency. Blood 2016; 128: 4945.
- Ekim M, Yrlmaz YK. The prevalence of Factor V Leiden, prothrombin G20210A, MTHFR C677T and MTHFR A1298C mutations in healthy Turkish population. Hippokratia 2015; 19(4): 309–313.
- Rosendaal FR, Koster T. Vanderbroucke JP et al. High risk of thrombosis in patients homozygous for factor V Leiden (activated protein C resistance). Blood 1995; 85(6): 1504–1508.
- Kessler P. Trombofilní stavy. Interní medicína pro praxi, 2007; 8(9): 374–379.
- Rees DC, Cox M, Clegg MB. World distribution of factor V Leiden. The Lancet 1995; 346: 1133-1134.
- Madjukova S, Volk M, Peterlin B et al. Detection of thrombophilic mutations related to spontaneous abortions by a multiplex SNaPshot method. Genet Test Mol Biomarkers 2012; 16(4): 259–264.
- Leroyer C, Mercier B, Oger E et al. Prevalence of 20210 A allele of the prothrombin gene in venous thromboembolism patients. Thromb Haemost 1998; 80(1): 49–51.
- Hillarp A, Zöller B, Svensson PJ et al. The 20210 A allele of the prothrombin gene is a common risk factor among Swedish outpatients with verified deep venous thrombosis. Thromb Haemost 1997; 78(1): 990–992.
- Rosendaal FR, Doggen CJM, Zivelin A et al. Geographic distribution of the 20210 G to A prothrombin variant. Thromb Haemost 1998; 79(4): 706–708.
- Dahlbäck B. Protein S and C4b-binding protein: components involved in the regulation of the protein C anticoagulant system. Thromb Haemost 1991; 66(1): 49–61.
- Di Minno MND, Ambrosino P, Ageno W et al. Natural anticoagulants deficiency and the risk of venous thromboembolism: a meta-analysis of observational studies. Thromb Res 2015; 135(5): 923–932.
- Dahlbäck B. The protein C anticoagulant system: inherited defects as basis for venous thrombosis. Thromb Res 1995; 77(1): 1–43
- Goldenber NA, Manco-Johnson MJ. Protein C deficiency. Haemophilia 2008; 14(6): 1214–1221.
- Lu Z, Wang F, Liang M. SerpinC1/Antithrombin III in kidney-related diseases. Clin Sci 2017; 131(9): 823–831.
- Wypasek E, Corral J, Alhenc-Gelas et al. Genetic characterization of antithrombin, protein C, and protein S deficiencies in Polish patients. Pol Arch Intern Med 2017; 127(7-8): 512–523.
- Wypasek E, Undas A. Protein C and protein S deficiency-practical diagnostic issues. Adv Clin Exp Med 2013; 22(4): 459–467.
- Bertina RM, Koelman BP, Koster T et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994; 369: 64–67.
- Ekim M, Ekim H, Yrlmaz YK. The prevalence of Factor V Leiden, prothrombin G20210A, MTHFR C677T and MTHFR A1298C mutations in healthy Turkish population. Hippokratia 2015; 19(4): 309–313.
- Blasczyk R, Ritter M, Thiede M et al. Simple and rapid detection of factor V Leiden by allele-specific PCR amplification. Thromb Haemost 1996; 75(5): 757–759.
- Yousefian E, Kardi MT, Allahveisi A. Methylenetetrahydrofolate reductase C677T and A1298C polymorphism in Iranian women with idiopathic recurrent pregnancy losses. Iran Red Crescent Med J 2014; 16(7).
- Awad NS, Almaki TA, Sabry AM et al. Screening of factor V G1691A (Leiden) and factor II/prothrombin G20210A polymorphisms among apparently healthy Taif-Saudi Arabia population using a reverse hybridization strip assay approach. World J Med Sci 2013; 9(4): 202–207.
- van den Bergh FA, van Oeveren-Dybicz AM, Bon MAM. Rapid single-tube genotyping of the factor V Leiden and prothrombin mutations by real-time PCR using dual-color detection. Clin Chem 2000; 46(8): 1191–1195.
- Geiger K, Leiherer A, Brandtner EM et al. Direct blood PCR: TaqMan-probe based detection of the venous thromboembolism associated mutations factor V Leiden and prothrombin c. 20210G> A without DNA extraction. Clin Chim Acta 2019; 488: 221–225.
- Baris I, Koksal V, Etlik O. Multiplex PCR-RFLP assay for detection of factor V Leiden and prothrombin G20210A. Gen Test 2004; 8(4): 381–383.
- Kofiadi IA, Rebrikov DV. Methods for detecting single nucleotide polymorphisms: Allele-specific PCR and hybridization with oligonucleotide probe. Genetika 2006, 42(1): 22–32.
- Heid CA, Stevens J, Livak K. J et al. Real Time Quantitative PCR. Genome Res 1996; 6(10): 986–994.
- Fidalgo T, Ribeiro ML. Added value of next-generation sequencing for haemostasis diagnosis. Thromb Haemost Res 2017; 1(2): 1007.
- Lotta LA, Wang M, Yu J et al. Identification of genetic risk variants for deep vein thrombosis by multiplexed next-generation sequencing of 186 hemostatic/pro-inflammatory genes. BMC Med Genomics 2012; 5(1): 7.
- de Haan HG, van Hylckama Vlieg A, Lotta LA et al. Targeted sequencing to identify novel genetic risk factors for deep vein thrombosis: a study of 734 genes. J Thromb Haemost 2018; 16(12): 2432–2441.
- Vodička R, Vrtěl R, Menšíková K, Kaňovský P et al. Next Generation Sequencing Data Analysis Evaluation in Patients with Parkinsonism from a Genetically Isolated Population. Genomics And Computational Biology 2017; 3(3): e44.
- Lind-Halldén C, Dahlín A, Hillarp A et al. Small and large PROS1 deletions but no other types of rearrangements detected in patients with protein S deficiency. Thromb Haemost 2012; 108(1): 94–100.
- Pintao MC, Garcia AA, Borgel D et al. Gross deletions/duplications in PROS1 are relatively common in point mutation-negative hereditary protein S deficiency. Hum Genet 2009; 126(3): 449–456.
- Picard V, Chen JM, Tardy B et al. Detection and characterisation of large SERPINC1 deletions in type I inherited antithrombin deficiency. Hum Genet 2010; 127(1): 45–53.
Štítky
Addictology Allergology and clinical immunology Angiology Audiology Clinical biochemistry Dermatology & STDs Paediatric gastroenterology Paediatric surgery Paediatric cardiology Paediatric neurology Paediatric ENT Paediatric psychiatry Paediatric rheumatology Diabetology Pharmacy Vascular surgery Pain management Dental HygienistČlánok vyšiel v časopise
Journal of Czech Physicians
2019 Číslo 1
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Advances in the Treatment of Myasthenia Gravis on the Horizon
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
- What Effect Can Be Expected from Limosilactobacillus reuteri in Mucositis and Peri-Implantitis?
Najčítanejšie v tomto čísle
- Hereditary cancer syndromes, their testing and prevention
- Congenital anomalies in children born in the Czech Republic in 1994-2015
- Implication of cytogenetic and molecular cytogenetic analysis in diagnosis of hematological malignancies in the era of the new sequencing techniques
- Unique characteristics of informed consent in clinical genetics and genetic counselling