#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Review of the most interesting news and trends of the 35th EANM congress


Authors: V. Laskov
Authors place of work: Klinika nukleární medicíny, 3. LF a FN Královské Vinohrady, Praha 10, ČR
Published in the journal: NuklMed 2023;12:9-17
Category: Review Article

Summary

We will review nowadays trends in radionuclide therapy and new challenges in therapy respond assessment, theragnostics and radiotherapy planning. We will also mention a long-lasting problem of artefacts and new ways how to resolve them. Nuclear medicine tools describing cellular and subcellular biological properties make it possible to detect tumor heterogeneity and identification of metabolic disarray typical for dedifferentiation. There is also a new insight into classical bone scintigraphy, e.g., early SPECT is a matter of interest and there are several new publications about this topic. Last but not least is a new progress in quantification, we will also discuss current techniques in this area. EANM practical guidelines were published yet which can help physicians and scientists to perform a high-quality quantitative evaluation of radiopharmaceutical distribution.

Keywords:

trends – therapy – quantification – 35th EANM congress – news


Zdroje
  1. Avram AM, Zukotynski K, Nadel HR, et al. Management of Differentiated Thyroid Cancer: The Standard of Care. J Nucl Med Off Publ Soc Nucl Med. 2022;63:189-195. doi:10.2967/jnumed.121.262402
  2. Tuttle RM, Ahuja S, Avram AM, et al. Controversies, Consensus, and Collaboration in the Use of 131I Therapy in Differentiated Thyroid Cancer: A Joint Statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association. Thyroid Off J Am Thyroid Assoc. 2019;29:461-470. doi:10.1089/thy.2018.0597
  3. Campennì A, Barbaro D, Guzzo M, et al. Personalized management of differentiated thyroid cancer in real life - practical guidance from a multidisciplinary panel of experts. Endocrine. 2020;70:280-291. doi:10.1007/s12020-020-02418-x
  4. Virgolini I. Overall survival results from the NETTER-1 trial in neuroendocrine tumours: an important milestone. Lancet Oncol. 2021;22:1645-1646. doi:10.1016/S1470-2045(21)00593-3
  5. Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med. 2017;376:125-135. doi:10.1056/NEJMoa1607427
  6. Pavel M, Baudin E, Couvelard A, et al. ENETS Consensus Guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology. 2012;95:157-176. doi:10.1159/000335597
  7. Rodrigues M, Svirydenka H, Virgolini I. Theragnostics in Neuroendocrine Tumors. PET Clin. 2021;16:365-373. doi:10.1016/j.cpet.2021.03.001
  8. Gabriel M, Decristoforo C, Kendler D, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med Off Publ Soc Nucl Med. 2007;48:508-518. doi:10.2967/jnumed.106.035667
  9. Gabriel M, Nilica B, Kaiser B, et al. Twelve-Year Follow-up After Peptide Receptor Radionuclide Therapy. J Nucl Med Off Publ Soc Nucl Med. 2019;60:524-529. doi:10.2967/jnumed.118.215376
  10. Nilica B, Waitz D, Stevanovic V, et al. Direct comparison of (68)Ga-DOTA-TOC and (18)F-FDG PET/CT in the follow-up of patients with neuroendocrine tumour treated with the first full peptide receptor radionuclide therapy cycle. Eur J Nucl Med Mol Imaging. 2016;43:1585-1592. doi:10.1007/s00259-016-3328-2
  11. Gabriel M, Oberauer A, Dobrozemsky G, et al. 68Ga-DOTA-Tyr3-octreotide PET for assessing response to somatostatin-receptor-mediated radionuclide therapy. J Nucl Med Off Publ Soc Nucl Med. 2009;50:1427-1434. doi:10.2967/jnumed.108.053421
  12. Sadaghiani MS, Sheikhbahaei S, Werner RA, et al. 177 Lu-PSMA radioligand therapy effectiveness in metastatic castration-resistant prostate cancer: An updated systematic review and meta-analysis. The Prostate. 2022;82:826-835. doi:10.1002/pros.24325
  13. Calais J, Gafita A, Eiber M, et al. Prospective phase 2 trial of PSMA-targeted molecular RadiothErapy with 177Lu-PSMA-617 for metastatic castration-reSISTant Prostate Cancer (RESIST-PC): efficacy results of the UCLA cohort. J Nucl Med Off Publ Soc Nucl Med. 2021;62:1440-1446. doi:10.2967/jnumed.121.261982
  14. Hofman MS, Emmett L, Sandhu S, et al. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet Lond Engl. 2021;397:797-804. doi:10.1016/S0140-6736(21)00237-3
  15. Sartor O, de Bono J, Chi KN, et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med. 2021;385:1091-1103. doi:10.1056/NEJMoa2107322
  16. Polycarpou I, Soultanidis G, Tsoumpas C. Synergistic motion compensation strategies for positron emission tomography when acquired simultaneously with magnetic resonance imaging. Philos Trans R Soc Math Phys Eng Sci. 2021;379(2204):20200207. doi:10.1098/rsta.2020.0207
  17. Kyme AZ, Fulton RR. Motion estimation and correction in SPECT, PET and CT. Phys Med Biol. 2021;66(18). doi:10.1088/1361-6560/ac093b
  18. Lamare F, Bousse A, Thielemans K, et al. PET respiratory motion correction: quo vadis? Phys Med Biol. 2022;67(3). doi:10.1088/1361-6560/ac43fc
  19. Fayad H, Schmidt H, Wuerslin C, et al. Reconstruction-Incorporated Respiratory Motion Correction in Clinical Simultaneous PET/MR Imaging for Oncology Applications. J Nucl Med. 2015;56:884-889. doi:10.2967/jnumed.114.153007
  20. Polycarpou I, Tsoumpas C, Marsden PK. Analysis and comparison of two methods for motion correction in PET imaging. Med Phys. 2012;39:6474-6483. doi:10.1118/1.4754586
  21. Kesner AL, Schleyer PJ, Büther F, et al. On transcending the impasse of respiratory motion correction applications in routine clinical imaging - a consideration of a fully automated data driven motion control framework. EJNMMI Phys. 2014;1:8. doi:10.1186/2197-7364-1-8
  22. Büther F, Jones J, Seifert R, et al. Clinical Evaluation of a Data-Driven Respiratory Gating Algorithm for Whole-Body PET with Continuous Bed Motion. J Nucl Med Off Publ Soc Nucl Med. 2020;61:1520-1527. doi:10.2967/jnumed.119.235770
  23. Walker MD, Morgan AJ, Bradley KM, et al. Data-Driven Respiratory Gating Outperforms Device-Based Gating for Clinical 18F-FDG PET/CT. J Nucl Med Off Publ Soc Nucl Med. 2020;61:1678-1683. doi:10.2967/jnumed.120.242248
  24. Pösse S, Büther F, Mannweiler D, et al. Comparison of two elastic motion correction approaches for whole-body PET/CT: motion deblurring vs gate-to-gate motion correction. EJNMMI Phys. 2020;7:19. doi:10.1186/s40658-020-0285-4
  25. Surti S, Pantel AR, Karp JS. Total Body PET: Why, How, What for? IEEE Trans Radiat Plasma Med Sci. 2020;4(3):283-292. doi:10.1109/trpms.2020.2985403
  26. Pan T, Thomas MA, Luo D. Data-driven gated CT: An automated respiratory gating method to enable data-driven gated PET/CT. Med Phys. 2022;49:3597-3611. doi:10.1002/mp.15620
  27. Klén R, Teuho J, Noponen T, et al. Estimation of optimal number of gates in dual gated 18F-FDG cardiac PET. Sci Rep. 2020;10:19362. doi:10.1038/s41598-020-75613-5
  28. Teräs M, Kokki T, Durand-Schaefer N, et al. Dual-gated cardiac PET-clinical feasibility study. Eur J Nucl Med Mol Imaging. 2010;37:505-516. doi:10.1007/s00259-009-1252-4
  29. Otaki Y, Lassen ML, Manabe O, et al. Short-term repeatability of myocardial blood flow using 82Rb PET/CT: The effect of arterial input function position and motion correction. J Nucl Cardiol. 2021;28:1718-1725. doi:10.1007/s12350-019-01888-5
  30. Gillman A, Smith J, Thomas P, et al. PET motion correction in context of integrated PET/MR: Current techniques, limitations, and future projections. Med Phys. 2017;44:e430-e445. doi:10.1002/mp.12577
  31. Hong I, Burbar Z, Schleyer P. A Method to Estimate Motion Frames from PET Listmode by Merging Adjacent Clusters. In: 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC).2019:1-2. doi:10.1109/NSS/MIC42101.2019.9059870
  32. Spangler-Bickell MG, Hurley SA, Pirasteh A, et al. Evaluation of Data-Driven Rigid Motion Correction in Clinical Brain PET Imaging. J Nucl Med. Published online January 1, 2022. doi:10.2967/jnumed.121.263309
  33. Markiewicz PJ, Matthews JC, Ashburner J, et al. Uncertainty analysis of MR-PET image registration for precision neuro-PET imaging. NeuroImage. 2021;232:117821. doi:10.1016/j.neuroimage.2021.117821
  34. Picard Y, Thompson CJ. Motion correction of PET images using multiple acquisition frames. IEEE Trans Med Imaging. 1997;16:137-144. doi:10.1109/42.563659
  35. Rahmim A, Dinelle K, Cheng JC, et al. Accurate event-driven motion compensation in high-resolution PET incorporating scattered and random events. IEEE Trans Med Imaging. 2008;27:1018-1033. doi:10.1109/TMI.2008.917248
  36. Bloomfield PM, Spinks TJ, Reed J, et al. The design and implementation of a motion correction scheme for neurological PET. Phys Med Biol. 2003;48:959-978. doi:10.1088/0031-9155/48/8/301
  37. Jiao J, Bousse A, Thielemans K, et al. Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data. IEEE Trans Med Imaging. 2017;36:203-213. doi:10.1109/TMI.2016.2594150
  38. Gallamini A, Barrington SF, Biggi A, et al. The predictive role of interim positron emission tomography for Hodgkin lymphoma treatment outcome is confirmed using the interpretation criteria of the Deauville five-point scale. Haematologica. 2014;99:1107-1113. doi:10.3324/haematol.2013.103218
  39. Meignan M, Barrington S, Itti E, et al. Report on the 4th International Workshop on Positron Emission Tomography in Lymphoma held in Menton, France, 3-5 October 2012. Leuk Lymphoma. 2014;55:31-37. doi:10.3109/10428194.2013.802784
  40. Barrington SF, Kirkwood AA, Franceschetto A, et al. PET-CT for staging and early response: results from the Response-Adapted Therapy in Advanced Hodgkin Lymphoma study. Blood. 2016;127:1531-1538. doi:10.1182/blood-2015-11-679407
  41. Johnson P, Federico M, Kirkwood A, et al. Adapted Treatment Guided by Interim PET-CT Scan in Advanced Hodgkin’s Lymphoma. N Engl J Med. 2016;374:2419-2429. doi:10.1056/NEJMoa1510093
  42. Enilorac B, Lasnon C, Nganoa C, et al. Does PET Reconstruction Method Affect Deauville Score in Lymphoma Patients? J Nucl Med Off Publ Soc Nucl Med. 2018;59:1049-1055. doi:10.2967/jnumed.117.202721
  43. Barrington SF, Meignan M. Time to Prepare for Risk Adaptation in Lymphoma by Standardizing Measurement of Metabolic Tumor Burden. J Nucl Med Off Publ Soc Nucl Med. 2019;60:1096-1102. doi:10.2967/jnumed.119.227249
  44. Barrington SF, Phillips EH, Counsell N, et al. Positron Emission Tomography Score Has Greater Prognostic Significance Than Pretreatment Risk Stratification in Early-Stage Hodgkin Lymphoma in the UK RAPID Study. J Clin Oncol Off J Am Soc Clin Oncol. 2019;37:1732-1741. doi:10.1200/JCO.18.01799
  45. Cheson BD, Ansell S, Schwartz L, et al. Refinement of the Lugano Classification lymphoma response criteria in the era of immunomodulatory therapy. Blood. 2016;128:2489-2496. doi:10.1182/blood-2016-05-718528
  46. Younes A, Hilden P, Coiffier B, et al. International Working Group consensus response evaluation criteria in lymphoma (RECIL 2017). Ann Oncol Off J Eur Soc Med Oncol. 2017;28:1436-1447. doi:10.1093/annonc/mdx097
  47. Dercle L, Seban RD, Lazarovici J, et al. 18F-FDG PET and CT Scans Detect New Imaging Patterns of Response and Progression in Patients with Hodgkin Lymphoma Treated by Anti-Programmed Death 1 Immune Checkpoint Inhibitor. J Nucl Med Off Publ Soc Nucl Med. 2018;59:15-24. doi:10.2967/jnumed.117.193011
  48. Hirata K, Tamaki N. Quantitative FDG PET Assessment for Oncology Therapy. Cancers. 2021;13:869. doi:10.3390/cancers13040869
  49. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15:81-94. doi:10.1038/nrclinonc.2017.166
  50. Mayerhoefer ME, Materka A, Langs G, et al. Introduction to Radiomics. J Nucl Med Off Publ Soc Nucl Med. 2020;61:488-495. doi:10.2967/jnumed.118.222893
  51. Kersting D, Seifert R, Kessler L, et al. Predictive Factors for RAI-Refractory Disease and Short Overall Survival in PDTC. Cancers. 2021;13:1728. doi:10.3390/cancers13071728
  52. Deroose CM, Hindié E, Kebebew E, et al. Molecular Imaging of Gastroenteropancreatic Neuroendocrine Tumors: Current Status and Future Directions. J Nucl Med Off Publ Soc Nucl Med. 2016;57:1949-1956. doi:10.2967/jnumed.116.179234
  53. McCullough RW, Gandsman EJ. Pathophysiologic interpretation of time activity curves in dynamic bone imaging. Clin Nucl Med. 1988;13:517-524. doi:10.1097/00003072-198807000-00011
  54. Granier P, Manicourt D, Pauwels S, et al. Analyse semi-quantitative des données de la scintigraphie osseuse en trois temps dans l’algodystrophie des extrémités. Rev Rhum Engl Ed. 1994;61:179.
  55. Leitha T, Staudenherz A, Korpan M, et al. Pattern recognition in five-phase bone scintigraphy: diagnostic patterns of reflex sympathetic dystrophy in adults. Eur J Nucl Med. 1996;23:256-262. doi:10.1007/BF00837623
  56. O’donoghue JP, Powe JE, Mattar AG, et al. Three-Phase Bone Scintigraphy Asymmetric Patterns in the Upper Extremities of Asymptomatic Normals and Reflex Sympathetic Dystrophy Patients. Clin Nucl Med. 1993;18:829.
  57. Fournier RS, Holder LE. Reflex sympathetic dystrophy: Diagnostic controversies. Semin Nucl Med. 1998;28:116-123. doi:10.1016/S0001-2998(98)80022-6
  58. Girma A, Ramadan A, Benisvy D, et al. Reproductibilité en scintigraphie osseuse planaire, TEMP et TEMP/TDM du pied douloureux : importance d’une sémiologie standardisée. Médecine Nucl. 2010;34:513-527. doi:10.1016/j.mednuc.2010.05.004
  59. Mostafa R, Abdelhafez YG, Abougabal M, et al. Two-bed SPECT/CT versus planar bone scintigraphy: prospective comparison of reproducibility and diagnostic performance. Nucl Med Commun. 2021;42:360. doi:10.1097/MNM.0000000000001353
  60. Huellner MW, Strobel K. Clinical applications of SPECT/CT in imaging the extremities. Eur J Nucl Med Mol Imaging. 2014;41:50-58. doi:10.1007/s00259-013-2533-5
  61. Verschueren J, Albert A, Carp L, et al. Bloodpool SPECT as part of bone SPECT/CT in painful total knee arthroplasty (TKA): validation and potential biomarker of prosthesis biomechanics. Eur J Nucl Med Mol Imaging. 2019;46:1009-1018. doi:10.1007/s00259-018-4244-4
  62. Cuvilliers C, Palard-Novello X, Pontoizeau C, et al. The Added Value of Bloodpool SPECT/CT in Painful Non-Operated Foot and Ankle Undiagnosed With Standard Three-Phase Bone Scintigraphy. Front Med. 2021;8. Accessed February 20, 2023. https://www.frontiersin.org/articles/10.3389/fmed.2021.634419
  63. Van den Wyngaert T, Strobel K, Kampen WU, et al. The EANM practice guidelines for bone scintigraphy. Eur J Nucl Med Mol Imaging. 2016;43:1723-1738. doi:10.1007/s00259-016-3415-4
  64. Gupta SK, Rutherford N, Allen L. SPECT Blood Pool Imaging On Bone Scintigraphy Improves Diagnostic Yield Compared To Planar Imaging: Initial Experience. Internet J Nucl Med. 2013;6. Accessed February 20, 2023. http://ispub.com/IJNUC/6/1/1595
  65. Lee SJ, Won KS, Choi HJ, et al. Early-Phase SPECT/CT for Diagnosing Osteomyelitis: A Retrospective Pilot Study. Korean J Radiol. 2021;22:604-611. doi:10.3348/kjr.2019.0746
  66. Phillips W, Gorzell B, Martinez R, et al. Rapid SPECT/CT Blood Pool Imaging for More Accurate Localization of Infection and Inflammation. J Nucl Med. 2017;58(supplement 1):1218-1218.
  67. Imbert L, Chevalier E, Claudin M, et al. A one-shot whole-body bone SPECT may be recorded in less than 20 minutes with the high-sensitivity Veriton® CZT-camera. J Nucl Med. 2019;60(supplement 1):1288-1288.
  68. Yamane T, Takahashi M, Matsusaka Y, et al. Satisfied quantitative value can be acquired by short-time bone SPECT/CT using a whole-body cadmium–zinc–telluride gamma camera. Sci Rep. 2021;11:24320. doi:10.1038/s41598-021-03853-0
  69. Ayoubi J, Guendouzen S, Morland D. Early-phase pelvic bone SPECT. Medicine (Baltimore). 2021;100(4):e24473. doi:10.1097/MD.0000000000024473
  70. Horger M, Bares R. The Role of Single-Photon Emission Computed Tomography/Computed Tomography in Benign and Malignant Bone Disease. Semin Nucl Med. 2006;36:286-294. doi:10.1053/j.semnuclmed.2006.05.001
  71. Delbeke D, Habibian MR. Noninflammatory entities and the differential diagnosis of positive three phase bone imaging. Clin Nucl Med. 1988;13:844-851. doi:10.1097/00003072-198811000-00021
  72. Han LJ, Au-Yong TK, Tong WCM, et al. Comparison of bone single-photon emission tomography and planar imaging in the detection of vertebral metastases in patients with back pain. Eur J Nucl Med. 1998;25:635-638. doi:10.1007/s002590050266
  73. Gates GF. SPECT bone scanning of the spine. Semin Nucl Med. 1998;28:78-94. doi:10.1016/S0001-2998(98)80020-2
  74. Cuvilliers C, Icard N, Meneret P, et al. Blood-Pool SPECT/CT in Chronic Ankle Tendinopathy. Clin Nucl Med. 2020;45:e457. doi:10.1097/RLU.0000000000003119
  75. Abdelhafez YG, Hagge RJ, Badawi RD, et al. Early and Delayed 99mTc-MDP SPECT/CT Findings in Rheumatoid Arthritis and Osteoarthritis. Clin Nucl Med. 2017;42:e480. doi:10.1097/RLU.0000000000001839
  76. Abdelhafez YG, Godinez F, Sood K, et al. Feasibility of dual-phase 99m Tc-MDP SPECT/CT imaging in rheumatoid arthritis evaluation. Quant Imaging Med Surg. 2021;11:2333343-2332343. doi:10.21037/qims-20-996
  77. O’Connor MK, Kemp BJ. Single-Photon Emission Computed Tomography/Computed Tomography: Basic Instrumentation and Innovations. Semin Nucl Med. 2006;36:258-266. doi:10.1053/j.semnuclmed.2006.05.005
  78. Willowson K, Bailey D, Baldock C. Quantitative SPECT using CT-derived corrections for photon interactions. J Nucl Med. 2008;49(supplement 1):394P-394P.
  79. Bailey DL, Willowson KP. Quantitative SPECT/CT: SPECT joins PET as a quantitative imaging modality. Eur J Nucl Med Mol Imaging. 2014;41:17-25. doi:10.1007/s00259-013-2542-4
  80. Ljungberg M. Absolute Quantitation of SPECT Studies. Semin Nucl Med. 2018;48:348-358. doi:10.1053/j.semnuclmed.2018.02.009
  81. Peters SMB, van der Werf NR, Segbers M, et al. Towards standardization of absolute SPECT/CT quantification: a multi-center and multi-vendor phantom study. EJNMMI Phys. 2019;6:29. doi:10.1186/s40658-019-0268-5
  82. 177Lu SPECT/CT – EANM EARL – Research4Life. Accessed February 20, 2023. https://earl.eanm.org/177lu-spect-ct/
  83. Dickson J, Ross J, Voo S. OPINION ARTICLE Open Access Quantitative SPECT: the time is now. EJNMMI Phys. 2019;6. doi:10.1186/s40658-019-0241-3
  84. Singh D, Miles K. Multiparametric PET/CT in oncology. Cancer Imaging. 2012;12:336-344. doi:10.1102/1470-7330.2012.9007
  85. Spick C, Herrmann K, Czernin J. 18F-FDG PET/CT and PET/MRI Perform Equally Well in Cancer: Evidence from Studies on More Than 2,300 Patients. J Nucl Med. 2016;57:420-430. doi:10.2967/jnumed.115.158808
  86. Im HJ, Bradshaw T, Solaiyappan M, et al. Current Methods to Define Metabolic Tumor Volume in Positron Emission Tomography: Which One is Better? Nucl Med Mol Imaging. 2018;52:5-15. doi:10.1007/s13139-017-0493-6
  87. Dimitrakopoulou-Strauss A, Pan L, Sachpekidis C. Kinetic modeling and parametric imaging with dynamic PET for oncological applications: general considerations, current clinical applications, and future perspectives. Eur J Nucl Med Mol Imaging. 2021;48:21-39. doi:10.1007/s00259-020-04843-6
  88. Aide N, Lasnon C, Veit-Haibach P, et al. EANM/EARL harmonization strategies in PET quantification: from daily practice to multicentre oncological studies. Eur J Nucl Med Mol Imaging. 2017;44:17-31. doi:10.1007/s00259-017-3740-2
  89. De Laroche R, Simon E, Suignard N, et al. Clinical interest of quantitative bone SPECT-CT in the preoperative assessment of knee osteoarthritis. Medicine (Baltimore). 2018;97:e11943. doi:10.1097/MD.0000000000011943
  90. Jreige M, Becce F, Hall N, et al. A novel assessment of Tc-99m-diphosphonate bone scan quantification in fibrous dysplasia using a combined planar and SPECT/CT analysis. J Nucl Med. 2021;62(supplement 1):1164-1164.
  91. Umeda T, Koizumi M, Fukai S, et al. Evaluation of bone metastatic burden by bone SPECT/CT in metastatic prostate cancer patients: defining threshold value for total bone uptake and assessment in radium-223 treated patients. Ann Nucl Med. 2018;32:105-113. doi:10.1007/s12149-017-1224-x
  92. van de Burgt A, Dibbets-Schneider P, Slump CH, et al. Experimental validation of absolute SPECT/CT quantification for response monitoring in patients with coronary artery disease. EJNMMI Phys. 2021;8:48. doi:10.1186/s40658-021-00393-4
  93. Toriihara A, Daisaki H, Yamaguchi A, et al. Semiquantitative analysis using standardized uptake value in 123I-FP-CIT SPECT/CT. Clin Imaging. 2018;52:57-61. doi:10.1016/j.clinimag.2018.06.009
  94. Blaire T, Bailliez A, Ben Bouallegue F, et al. First assessment of simultaneous dual isotope (123I/99mTc) cardiac SPECT on two different CZT cameras: A phantom study. J Nucl Cardiol. 2018;25:1692-1704. doi:10.1007/s12350-017-0841-z
  95. Dickson JC, Armstrong IS, Gabiña PM, et al. EANM practice guideline for quantitative SPECT-CT. Eur J Nucl Med Mol Imaging. 2023;50:980-995. doi:10.1007/s00259-022-06028-9
Štítky
Nuclear medicine Radiodiagnostics Radiotherapy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#