Current Benefit of Biological and Non-biological Methods in the Treatment of Acute Liver Failure
Authors:
O. Ryska 1; T. Pantoflíček 2; E. Lásziková 3; J. Pražák 4; M. Ryska 2
Authors‘ workplace:
Chirurgická klinika 1. LF UK a IPVZ, FN Bulovka, Praha, přednosta: prof. MUDr. F. Antoš, CSc.
1; Chirurgická klinika 2. LF UK a ÚVN Praha, přednosta: prof. MUDr. M. Ryska, CSc.
2; Oddělení anesteziologie a resuscitace ÚVN Praha, primář: MUDr. B. Jurenka
3; Klinika anesteziologie, resuscitace a intenzivní péče 2. LF UK, přednosta: prof. MUDr. K. Cvachovec, CSc.
Centrum buněčné terapie a tkáňových náhrad, 2. LF UK, hlavní řešitel: prof. MUDr. E. Syková, DrSc.
4
Published in:
Rozhl. Chir., 2008, roč. 87, č. 6, s. 291-296.
Category:
Monothematic special - Original
Overview
Background:
There was an active interest in development of liver assist device in the last two decades. Using these devices to bridge patients with acute hepatic failure (AHF) to ortotopic liver transplantation (OLTx) or to liver regeneration might decrease the mortality rate. Several liver support systems have been described in different stages of experimental or clinical examination.
Methods:
PubMed (1986–2008) was searched using the keywords „artifitial livers“, „liver support“, „bioartifitial liver“ and „cell transplantation“. The own experience presenting by authors are the conclusions of their publications.
Results and discussion:
Biological liver support (BAL) uses hepatocytes can support theoretically both detoxification and biosynthesis. Experimental study confirmed significant decrease in some of AHF metabolites. Nevertheless, randomized study didn’t show any improvement in patient’s survival. Source of viable hepatocytes and sufficient bioreactor capacity are some of unsolved problems. Nonbiological liver support as a plasma exchange, hemodialysis, hemofiltration, albumin dialysis or adsorbent recycling systems eliminate some of toxins, but other specific liver functions can’t replace. MARS® and Prometheus® devices have been used successfully in treatment of AHF by human. However, the absence of randomized study still lasts. These devices remove some of toxins and cytokines unselectively and are also limited by adsorber capacity. Selective plasma filtration therapy and hybrid liver support systems which combine both of management advances present the possible solution. Authors themselves confirmed by application of both methods a significant decrease of bilirubin level. Intracranial pressure declines only by use of non-biological device – Prometheus®.
Conclusion:
Effective liver assist device that gains a survival approval hasn’t been developed till now. In confrontation with other current used cure possibilities, BAL didn’t propose the original expectations. On the other hand, the non-biological devices seem to be perspective and their contribution has been proved by prospective studies. The randomized study is still absent. Authors’ experiences confirm this trend.
Key words:
acute hepatic failure – artifitial liver – non-biological liver support – liver support
Sources
1. Bernuau, J., Rueff, B., Bernhamou, J. P. Fulminant and subfulminant liver failure. Definitions and causes. Semin Liver Dis 6: 97–106, 1986.
2. Trey, C., Davidson, C. S. The management of fulminant hepatic failure. Prog. Liver Dis., 3, 1970: 282–298.
3. Sorrentino, F. Prime ricerche per la realizzatione di n fegato arftificiale. Chirurgie Patologica Sperimentale, 1956, 4, 1401.
4. Abouns, G. M., et al. Succesful ex vivo liver perfusion system for hepatic failure panding liver regeneration or liver transplantation. Transplant. Proc., 33, 1962–1964.
5. Lie, T. S. Treatmen of acute hepatic failure by extracorporeal hemoperfusion over human and baboon liver. In: Artificial liver support, 268-273 (Eds. Brunner G and Schmidt FW), Berlin: Springer.
6. Mitry, R. R., Hughes, R. D., Aw, M. M., et al. Human hepatocyte isolation and relationship of cell viability to early graft function. Cell Transplant., 2003; 12(1): 69–74.
7. Gupta, S. Hepatocyte transplantation. J. Gastroenterol. Hepatol., 2002, Dec; 17 Suppl. 3: S287–S293.
8. Nagaki, M., Naito, T., Ohnishi, H. Effects of plasma from patients with fulminant hepatic failure on function of primary rat hepatocytes in three-dimensional culture. Liver Int., 2005, Oct; 25(5): 1010–1017.
9. Naruse, K. Artificial liver support: future aspects. J. Artif .Organs., 2005; 8(2): 71–76.
10. Sosef, M. N., Abrahamse, L. S. L., van de Kerkhove, M. P., et al. Assesment of the AMC – bioartificial liver in the anhepatic pig. Transplantation, 73, 2002: 204–209.
11. Demetriou, A. A., Brown, R. S., Busutil, R. W., et al. Prospective, randomized, multicentr, controlled trial of a bioartifitial liver in treating of acute liver failure. World J. Gastroenterol., 2001, 7, 706.
12. Paradis, K., Langford, G., Long, Z., et al. Search for crossspecies transmission of porcine endogenous retrovirus in patients treated with living pig tissue. Science, 1999, 286, 1236.
13. Dahlie, M. H., Popp, F. C., Larsen, S., et al. Stem cell therapy of the liver – fusion or fiction? Liver Transpl., 2004, Apr; 10(4): 471–479.
14. Denis, J., Opolon, P., Nusinovici, V., et al. Treatment of ence-phalopathy during fulminant hepatic failure by harmodialysis with jigh permeability membrane. Gut, 1978, 19, 787.
15. Rifai, et al. Liver replacement therapy. Reliable indications in acute liver failure. Internist, 2003, 44, 1485–1490.
16. Horák, J., Sulková, S. Junctions of hepatology and nephrology. Cas. Lek. Cesk., 2004; 143(7): 459–464.
17. Rozga, J., Umehara, Y., Trofimenko, A. A novel plasma filtration therapy for hepatic failure: preclinical studies, Ther. Apher. Dial., 2006, Apr; 10(2): 138–144.
18. Sabin, S., Merritt, J. A. Treatment of hepatic coma in cirhosis by plasmapheresis and plasma infusion (plasma exchange). Ann. Intern. Med., 1968, 68, 1.
19. Stange, J., Ramlow, W., Mitzner, S., et al. Dialysis against a recycled albumin solution enables the removal of albumin-bound toxins. Artif. Organs, 1993, Sep; 17(9): 809–813.
20. Stange, J., Mitzner, S. R., Risler, T., et al. Molecular adsorbent recycling system (MARS): clinical results of a new membrane-based blood purification system for bioartificial liver support. Artif. Organs, 1999, Apr; 23(4): 319–330.
21. Jalan, R., Sen, S., Steiner, C., et al. Extracorporeal liver support with molecular adsorbents recirculating system in patients with severe acute alcoholic hepatitis. J. Hepatol., 2003, Jan; 38(1): 24–31.
22. Laleman, W., Wilmer, A., Evenepoel, P., et al. Effect of the molecular adsorbent recirculating system and Prometheus® devices on systemic haemodynamics and vasoactive agents in patients with acute-on-chronic alcoholic liver failure. Crit. Care, 2006; 10(4): R108.
23. Meijers, B. K., Verhamme, P., Nevens, F., et al. Major coagulation disturbances during fractionated plasma separation and adsorption. Am. J. Transplant., 2007, Sep; 7(9): 2195–2199. Epub 2007 Jul 19.
24. Peszynski, P., Klammt, S., Peters, E., et al. Albumin dialysis: single pass vs recirculation (MARS). Liver, 2002, 22, Suppl. 40.
25. Tsubouchi, H., Hirono, S., Godha, E., et al. Clinical significance of human hepatocyte growth factor in blood from patients with fulminant hepatic failure. Hepatology, 1989, 9, 875.
26. Granato, A., Gores, G., Vilei, M. T., et al. Bilirubin inhibits bile acid inducted apoptosis in rat hepatocyte. Gut, 2003, 52, 1774–1778.
27. Ryska, M., Kieslichova, E., Pantoflíček, T., Ryska, O., et al. Devascularization Surgical Model of Acute Liver Failure in Minipigs. Eur. Surg. Res., 2004; 36; 179–184 (IF).
28. Ryska, M., Kieslichová, E., Pantoflíček, T., Ryska, O., Zazula, R., Skibová, J. Model akutního selhání jater u miniprasete z hlediska chirurga a anesteziologa. Rozhl. Chir., 2004, 83: 436–442.
29. Kieslichová, E., Ryska, M., Pantoflíček, T., Ryska, O., Zazula, R., Skibová, J. Hemodynamic Parameters in a Surgical Devascularization Model of Fulminant Hepatic Failure in the Minipig. Phys. Res., 54, 2005: 485–490.
30. Ryska, M., Kieslichová, E., Pantoflíček, T., Ryska, O., Zazula, R., Skibová, J., Hájek, M. Chirurgický model akutního selhání jater u laboratorního miniprasete. Čes. Slov. Gastroent. Hepatol., 2004, 58: 83–88.
31. Newsome, P. N., Plevris, J. N., Nelson, L. J., et al. Animal models of fulminant hepatic failure:A critical evaluation. Liver Transplant., 2000;1: 21–31.
32. Ryska, M., Kieslichová, E., Pantoflíček, T., Ryska, O., Koblihová, E., Tcherentsová, E. Bioeliminace v léčbě akutního selhání jater v experimentu na velkém laboratorním zvířeti. Čes. Slov. Gastroent. Hepatol., 2006; 60: 157–162.
33. Ryska, M., Lásziková, E., Pantoflíček, T., Ryska, O., Pražák, J., Koblihová, E., Skibová, J. Prometheus v léčbě akutního selhání jater v experimentu na velkém laboratorním zvířeti. Čes. Slov. Gastroent. Hepatol., 2007; 61: 297–303.
34. Ryska, M., Lasziková, E., Pantoflíček, T., Ryska, O., Pražák, J., Koblihová, E., Skibová, J. Prométheus Significantly Decreases Intracranial Pressure on Acute Liver Failure. Experimental Study. Liver transplantation – in press.
Labels
Surgery Orthopaedics Trauma surgeryArticle was published in
Perspectives in Surgery
2008 Issue 6
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Most read in this issue
- Short Bowel Syndrome and Limits of Small Intestinal Resections
- Cystic Feochromocytoma, Mimicing a Liver Cyst. A Case Review
- Ventral Hernia Associated with Morbid Obesity – When Is Surgery Indicated?
- Miniinvasive Surgery in Spontaneous Pneumothorax – Indications and Surgical Technique