#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Vascular Prostheses: 50 years of Advancement from Synthetic towards Tissue Engineering and Cell Therapy


Authors: J. Chlupáč 1,2,3;  E. Filová 1,2;  L. Bačáková 1,2
Authors‘ workplace: Oddělení růstu a diferenciace buněčných populací, Fyziologický ústav, Akademie věd ČR, v. v. i., Praha, Česká republika, přednostka: MUDr. Lucie Bačáková, CSc. 1;  Centrum výzkumu chorob srdce a cév, Akademie věd ČR, v. v. i., Praha, Česká republika 2;  Klinika transplantační chirurgie, Institut klinické a experimentální medicíny – IKEM, Praha, Česká republika, přednosta: prof. MUDr. Miloš Adamec, CSc. 3
Published in: Rozhl. Chir., 2010, roč. 89, č. 1, s. 85-94.
Category: Monothematic special - Original

Overview

Since more than 50 years, the gold standard in synthetic vascular prostheses has been represented by polyethylene terephtalate (PET, Dacron) and expanded polytetrafluoroethylene (ePTFE). These polymers perform well as sustitutes of large-caliber vessels, however, their long-term patencies are disappointing in small-caliber applications (< 6 mm). Thus, patient’s own artery or vein remains the material of choice in coronary, crural or microvessel bypass surgery. Synthetic materials fail due to thrombosis and insufficient healing process that consists in highly incomplete endothelial cells coverage and intimal hyperplasia caused by compliance mismatch and hemodynamic imbalance. To find better small-caliber vascular graft, surgical techniques have been modified, novel biomaterials have been investigated and cell and tissue culture technologies have been adopted. Partly or fully tissue-engineered vascular grafts have been produced and experimentally and clinically evaluated with some promising result. The aim of this review is to briefly list currently used and examined vascular graft materials with special attention to cell/biomaterial ineractions, tissue engineering and authors’ own experience.

Key words:
blood vessel prosthesis – polyethylene terephtalate – polytetrafluoroethylene – polyurethanes – endothelial cells – tissue engineering


Sources

1. Norgren, L., Hiáty, W.R., Normandy, J. A., et al. TASC II Working Group. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J. Vasc. Surg., 2007; 45 Suppl S: S5–67.

2. Isenberg, B. C., Williams, C., Tranquillo, R. T. Small-diameter artificial arteries engineered in vitro. Review. Circ. Res., 2006; 98(1): 25–35.

3. Kakisis, J. D., Liapis, C. D., Breuer, C., Sumpio, B. E. Artificial blood vessel: the Holy Grail of peripheral vascular surgery. J. Vasc. Surg., 2005; 41(2): 349–354.

4. Cooper, G. J., Underwood, M. J., Deverall, P. B. Arterial and venous conduits for coronary artery bypass. Eur. J. Cardiothorac. Surg., 1996; 10: 129–140.

5. Dardik, H., Wengerter, K., Qin, F., et al. Comparative decades of experience with glutaraldehyde-tanned human umbilical cord vein graft for lower limb revascularization: an analysis of 1275 cases. J. Vasc. Surg., 2002; 35(1): 64–71.

6. Fahner, P. J., Idu, M. M., van Gulik, T. M., Legemate, D. A. Systematic review of preservation methods and clinical outcome of infrainguinal vascular allografts. J. Vasc. Surg., 2006; 44(3): 518–524.

7. Johnson, W. C., Lee, K. K. A comparative evaluation of polytetrafluoroethylene, umbilical vein, and saphenous vein bypass grafts for femoral-popliteal above-knee revascularization: a prospective randomized Department of Veterans Affairs cooperative study. J. Vasc. Surg., 2000; 32(2): 268–277.

8. Schmidt, C. E., Baier, J. M. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials, 2000; 21(22): 2215–2231.

9. Xue, L., Greisler, H. P. Biomaterials in the development and future of vascular grafts. J. Vasc. Surg., 2003; 37(2): 472–480.

10. Zilla, P., Bezuidenhout, D., Human, P. Prosthetic vascular grafts: wrong models, wrong questions and no healing. Biomaterials, 2007; 28(34): 5009–5027.

11. Tiwari, A., Salacinski, H., Seifalian, A. M., Hamilton, G. New prostheses for use in bypass grafts with special emphasis on polyurethanes. Cardiovasc. Surg., 2002; 10(3): 191–197.

12. Bosiers, M., Deloose, K., Verbist, J., et al. Heparin-bonded expanded polytetrafluoroethylene vascular graft for femoropopliteal and femorocrural bypass grafting: 1-year results. J. Vasc. Surg., 2006;43(2): 313–318.

13. Mirzaie, M., Schmitto, J. D., Tirilomis, T., et al. Surgical management of vascular graft infection in severely ill patients by partial resection of the infected prosthesis. Eur. J. Vasc. Endovasc. Surg., 2007; 33(5): 610–613.

14. Schouten, O., Hoedt, M. T., Wittens, C. H., et al. VASCAN Study Group. End-to-end versus end-to-side distal anastomosis in femoropopliteal bypasses; results of a randomized multicenter trial. Eur. J. Vasc. Endovasc. Surg., 2005; 29(5): 457–462.

15. Moawad, J., Gagne, P. Adjuncts to improve patency of infrainguinal prosthetic bypass grafts. Vasc. Endovascular Surg., 2003; 37(6): 381–386.

16. Panneton, J. M., Hollier, L. H., Hofer, J. M. Multicenter randomized prospective trial comparing a pre-cuffed polytetrafluoroethylene graft to a vein cuffed polytetrafluoroethylene graft for infragenicular arterial bypass. Ann. Vasc. Surg., 2004; 18(2): 199–206.

17. Bačáková, L., Filová, E., Rypáček, F., Švorčík, V., Starý, V. Cell adhesion on artificial materials for tissue engineering. Physiol Res., 2004; 53 Suppl 1: S35–45.

18. Riha, G. M., Lin, P. H., Lumsden, A. B., et al. Review: application of stem cells for vascular tissue engineering. Tissue Eng., 2005; 11(9–10): 1535–1552.

19. Muto, A., Fitzgerald, T. N., Pimiento, J. M., et al. Smooth muscle cell signal transduction: implications of vascular biology for vascular surgeons. J. Vasc. Surg., 2007; 45 Suppl A: A15–24.

20. Shin’oka, T., Omak, Y., Ikada, Y. Transplantation of a tissue-engineered pulmonary artery. N. Engl. J. Med., 2001; 344(7): 532–533.

21. L’Heureux, N., McAllister, T. N., de la Fuente, L. M. Tissue-engineered blood vessel for adult arterial revascularization. N. Engl. J. Med., 2007; 357(14): 1451–1453.

22. Kalra, M., Gloviczki, P., Andrews, J. C., et al. Open surgical and endovascular treatment of superior vena cava syndrome caused by nonmalignant disease. J. Vasc. Surg., 2003; 38(2): 215–223.

23. Scott, E. C., Glickman, M. H. Conduits for hemodialysis access. Semin. Vasc. Surg., 2007; 20(3): 158–163.

24. Chlupáč, J., Filová, E., Riedel, T., et al. Endothelial Cells on PET Vascular Prostheses Impregnated with Polyester-based Copolymers and Coated with Cell-adhesive Protein Assemblies. Engineering of Biomaterials, 2008; (81–84): 108–111.

25. L’Heureux, N., Dusserre, N., Marini, A., et al. Technology insight: the evolution of tissue-engineered vascular grafts-from research to clinical practice. Nat. Clin. Pract. Cardiovasc. Med., 2007; 4(7): 389–395.

26. Bordenave, L., Menu, P., Baquey. C. Developments towards tissue-engineered, small-diameter arterial substitutes. Expert Rev. Med. Devices, 2008; 5(3): 337–347.

27. Nezić, D. G., Knezević, A. M., Milojević, P. S., et al. The fate of the radial artery conduit in coronary artery bypass grafting surgery. Eur. J. Cardiothorac. Surg., 2006; 30(2): 341–346.

28. Nishibe, T., Kondo, Y., Muto, A., Dardik, A. Optimal prosthetic graft design for small diameter vascular grafts. Vascular., 2007; 15(6): 356–360.

29. Seifalian, A. M., Tiwari, A., Hamilton, G., Salacinski, H. J. Improving the clinical patency of prosthetic vascular and coronary bypass grafts: the role of seeding and tissue engineering. Artif. Organs, 2002; 26(4): 307–320.

Labels
Surgery Orthopaedics Trauma surgery

Article was published in

Perspectives in Surgery

Issue 1

2010 Issue 1
Popular this week
Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#