Existing laparoscopic simulators and their benefit for the surgeon
Authors:
J. Kalvach 1; O. Ryska 2; M. Ryska 1,3
Authors place of work:
Chirurgická klinika 2. LF Univerzity Karlovy a ÚVN, Praha
přednosta: prof. MUDr. M. Ryska, CSc.
1; Chirurgické oddělení NH Hospital, a. s., Hořovice
primář: MUDr. Z. Šerclová
2; Fakulta zdravotníctva a sociálnej práce, Trnavská Univerzita, Trnava
děkan: prof. MUDr. J. Slaný, CSc.
3
Published in the journal:
Rozhl. Chir., 2016, roč. 95, č. 1, s. 4-12.
Category:
Review
Summary
Introduction:
Nowadays, laparoscopic operations are a common part of surgical practice. However, they have their own characteristics and require a specific method of preparation. Recently, simulation techniques have been increasingly used for the training of skills. The aim of this review is to provide a summary of available literature on the topic of laparoscopic simulators, to assess their contribution to the training of surgeons, and to identify the most effective type of simulation.
Methods:
PubMed database, Web of Science and Cochrane Library were used to search for relevant publications. The keywords “laparoscopy, simulator, surgery, assessment” were used in the search. The search was limited to prospective studies published in the last 5 years in the English language.
Results:
From a total of 354 studies found, we included in the survey 26 that matched our criteria. Nine studies compared individual simulators to one another. Five studies evaluated „high and low fidelity“ (a virtual box simulator) as equally effective (EBM 2a). In three cases the „low fidelity“ box simulator was found to be more efficient (EBM 2a−3b). Only one study preferred the virtual simulator (VR) (EBM2b).
Thirteen studies evaluated the benefits of simulators for practice. Twelve found training on a simulator to be an effective method of preparation (EBM 1b−3b). In contrast, one study did not find any difference between the training simulator and traditional preparation (EBM 3b). Nine studies evaluated directly one of the methods of evaluating laparoscopic skills. Three studies evaluated VR simulator as a useful assessment tool. Other studies evaluated as successful the scoring system GOALS-GH. The hand motion analysis model was successful in one case. Most studies were observational (EBM 3b) and only 2 studies were of higher quality (EBM 2b).
Conclusion:
Simulators are an effective tool for practicing laparoscopic techniques (EBM: 1b). It cannot be determined based on available data which of the simulators is most effective. The virtual simulator, however, still remains the most self-sufficient unit suitable for teaching as well as evaluation of laparoscopic techniques (EBM 2b−3b). Further studies are needed to find an effective system and parameters for an objective evaluation of skills.
Key words:
laparoscopy – simulator – surgery − assessment
Zdroje
1. Keus F, Gooszen HG, van Laarhoven CJ. Open, small-incision, or laparoscopic cholecystectomy for patients with symptomatic cholecystolithiasis. An overview of Cochrane Hepato-Biliary Group reviews. Cochrane Database Syst Rev 2010,CD008318. doi: 10.1002/14651858.CD008318
2. Wu XS, Shi LB, Gu J, et al. Single-incision laparoscopic cholecystectomy versus multi-incision laparoscopic cholecystectomy: a meta-analysis of randomized clinical trials. Journal of Laparoendoscopic & Advanced Surgical Techniques 2013;23:183–91.
3. Grantcharov TP, Funch-Jensen P. Can every one achieve proficiency with the laparoscopic technique? Learning curve patterns in technical skills acquisition. Am J Surg 2009;197:447−9.
4. Van Bruwaene S, Schijven MP, Miserez M. Assessment of procedural skills using virtual simulation remains a challenge. J Surg Educ 2014;71:654−61.
5. Seymour NE, Gallagher AG, Roman SA, et al. Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann Surg 2002;236:463−4.
6. Scott DJ, Bergen PC, Rege RV, et al. Laparoscopic training on bench models: better and more cost effective than operating room experience? J Am Coll Surg 2000;191:272−83.
7. McCloy R, Stone R. Science, medicine, and the future. Virtual reality in surgery. BMJ 2001;323:912−5.
8. Larsen CR, Soerensen JL, Grantcharov TP, et al. Effect of virtual reality training on laparoscopic surgery: randomised controlled trial. BMJ 2009;338:b1802.
9. Grantcharov TP, Kristiansen VB, Bendix, J, et al. Randomized clinical trial of virtual reality simulation for laparoscopic skills training. Br J Surg 2004;91:146−50.
10. Ahlberg G, Enochsson L, Gallagher AG, et al. Proficiency-based virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies. Am J Surg 2007;193:797−804.
11. Loukas C, Nikiteas N, Schizas D, et al. A head-to-head comparison between virtual reality and physical reality simulation training for basic skills acquisition. Surg Endosc 2012;26:2550−8.
12. Oxford Centre for Evidence-based Medicine – Levels of Evidence (March 2009) http://www.cebm.net/oxford-centre-evidence- based-medicine-levels-evidencemarch- 2009/
13. Kramp KH, van Det MJ, Hoff C, et al. Validity and reliability of global operative assessment of laparoscopic skills (GOALS) in novice trainees performing a laparoscopic cholecystectomy. J Surg Educ 2015;72:351−8.
14. Darzi A, Datta V, Mackay S. The challenge of objective assessment of surgical skill. Am J Surg 2001;181:484−6.
15. Jaffer A, Bednarz B, Challacombe B, et al. The assessment of surgical competency in the UK. Int J Surg 2009;7:12−5.
16. Martin JA, Regehr G, Reznick R, et al. Objective structured assessment of technical skill (OSATS) for surgical residents. Br J Surg 1997;84:273−8.
17. Vassiliou MC, Feldman LS, Andrew CG, et al. A global assessment tool for evaluation of intraoperative laparoscopic skills. Am J Surg 2005;190:107−13.
18. Derossis AM, Fried GM, Abrahamowicz M, et al. Development of a model for training and evaluation of laparoscopic skills. Am J Surg 1998;175:482−7.
19. Mackay S, Datta V, Mandalia M, et al. Electromagnetic motion analysis in the assessment of surgical skill: Relationship between time and movement. ANZ J Surg 2002;72:632−4.
20. Loukas C, Rouseas C, Georgiou E. The role of hand motion connectivity in the performance of laparoscopic procedures on a virtual reality simulator. Med Biol Eng Comput 2013;51:911−22.
21. Grantcharov TP, Bardram L, Funch-Jensen P, et al. Learning curves and impact of previous operative experience on performance on a virtual reality simulator to test laparoscopic surgical skills. Am J Surg 2003;185:146−9.
22. Aggarwal R, Moorthy K, Darzi A. Laparoscopic skills training and assessment. Br J Surg 2004;91:1549−58.
23. Enochsson L, Isaksson B, Tour R, et al. Visuospatial skills and computer game experience influence the performance of virtual endoscopy. J Gastrointest Surg 2004;8:876−82.
24. Berg DA, Milner RE, Fisher CA, et al. A cost-effective approach to establishing a surgical skills laboratory. Surgery 2007;142:712−21.
25. Hamilton EC, Scott DJ, Fleming JB, et al. Comparison of videotrainer and virtual reality training systems on acquisition of laparoscopic skills. Surg Endosc 2002;16:406−11.
26. Kanumuri P, Ganai S, Wohaibi EM, et al. Virtual reality and computer-enhanced training devices equally improve laparoscopic surgical skill in novices. JSLS 2008;12:219−26.
27. Dehabadi M, Fernando B, Berlingieri P. The use of simulation in the acquisition of laparoscopic suturing skills. Int J Surg 2014;12:258−68.
28. Munro MG. Surgical simulation: where have we come from? Where are we now? Where are we going? J Minim Invasive Gynecol 2012;19:272−83.
29. Khan MS, Bann SD, Darzi A, et al. Assessing surgical skill. Plast Reconstr Surg 2003;113:1886−9.
30. Grantcharov TP, Bardram L, Funch-Jensen P, et al. Assessment of technical surgical skills. Eur J Surg 2002;168:139−44.
31. Chmarra MK, Grimbergen CA, Dankelman J. Systems for tracking minimally invasive surgical instruments. Minim Invasive Ther Allied Technol 2007;16:328−40.
32. Matsuda T, McDougall EM, Ono Y, et al. Positive correlation between motion analysis data on the LapMentor virtual reality laparoscopic surgical simulator and the results from videotape assessment of real laparoscopic surgeries. J Endourol 2012;26:1506−11.
33. Sidhu RS, Grober ED, Musselman LJ, et al. Assessing competency in surgery: where to begin? Surgery 2004;135:6−20.
34. Paisley AM, Baldwin PJ, Paterson-Brown S. Validity of surgical simulation for the assessment of operative skill. Br J Surg 2001;88:1525−32.
35. Gallagher AG, Ritter EM, Champion H, et al. Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Ann Surg 2005;24:364-72.
36. Steigerwald SN, Park J, Hardy KM, et al. Does laparoscopic simulation predict intraoperative performance? A comparison between the Fundamentals of Laparoscopic Surgery and LapVR evaluation metrics. Am J Surg. 2015;209:34−9.
37. Akdemir A, Sendağ F, Oztekin MK. Laparoscopic virtual reality simulator and box trainer in gynecology. Int J Gynaecol Obstet 2014;125:181−5.
38. Khan MW, Lin D, Marlow N, et al. Laparoscopic skills maintenance: a randomized trial of virtual reality and box trainer simulators. J Surg Educ 2014;71:79−84.
39. Brinkman WM, Tjiam IM, Buzink SN. Assessment of basic laparoscopic skills on virtual reality simulator or box trainer. Surg Endosc 2013;27:3584−90.
40. Mulla M, Sharma D, Moghul M, et al. Learning basic laparoscopic skills: a randomized controlled study comparing box trainer, virtual reality simulator, and mental training. J Surg Educ 2012;69:190−5.
41. Diesen DL, Erhunmwunsee L, Bennett, KM, et al. Effectiveness of laparoscopic computer simulator versus usage of box trainer for endoscopic surgery training of novices. J Surg Educ 2011;68:282−9.
42. Debes AJ, Aggarwa lR, Balasundaram I, et al. A tale of two trainers: virtual reality versus a video trainer for acquisition of basic laparoscopic skills. American Journal of Suregry 2010;199:840−845
43. Marlow N, Altree M, Babidge W, et al. Laparoscopic skills acquisition: a study of simulation and traditional training. ANZ J Surg 2014;84:976−80.
44. Uemura M, Yamashita M, Tomikawa M et al. Objective assessment of the suture ligature method for the laparoscopic intestinal anastomosis model using a new computerized system. Surg Endosc 2015;29:444−52.
45. Lehmann KS, Holmer C, Gillen S, et al. Suitability of a virtual reality simulator for laparoscopic skills assessment in a surgical training course. Int J Colorectal Dis 2013;28:563-71.
46. Lewis TM, Aggarwal R, Kwasnicki RM, et al. Can virtual reality simulation be used for advanced bariatric surgical training? Surgery 2012;151:779−84.
47. Mohtashami F, von Dadelszen P, Allaire C. A surgical virtual reality simulator distinguishes between expert gynecologic laparoscopic surgeons and perinatologists. JSLS 2011;15:365−72.
48. Kurashima Y, Feldman LS, Kaneva PA, et al. Simulation-based training improves the operative performance of totally extraperitoneal (TEP) laparoscopic inguinal hernia repair: a prospective randomized controlled trial. Surg Endosc 2014;28:783−8.
49. Araujo SE, Delaney CP, Seid VE, et al. Short-duration virtual reality simulation training positively impacts performance during laparoscopic colectomy in animal model: results of a single-blinded randomized trial: VR warm-up for laparoscopic colectomy. Surg Endosc 2014;28:2547−54.
50. Kurashima Y, Feldman LS, Al-Sabah S, et al. A tool for training and evaluation of laparoscopic inguinal hernia repair: the Global Operative Assessment Of Laparoscopic Skills-Groin Hernia (GOALS-GH). Am J Surg 2011;201:54−61.
51. Sharma M, Macafee D, Horgan AF. Basic laparoscopic skills training using fresh frozen cadaver: a randomized controlled trial. Am J Surg 2013;206:23−31.
52. Chen CC, Green IC, Colbert-Getz JM, et al. Warm-up on a simulator improves residents’ performance in laparoscopic surgery: a randomized trial. Int Urogynecol J 2013;24:1615−22.
53. Gallagher AG, Seymour NE, Jordan-Black JA. Prospective, randomized assessment of transfer of training (ToT) and transfer effectiveness ratio (TER) of virtual reality simulation training for laparoscopic skill acquisition. Ann Surg 2013;257:1025−31.
54. Sarker SJ, Telfah MM, Onuba L, et al. Objective assessment of skills acquisition during laparoscopic surgery courses. Surg Innov 2013;20:530−8.
55. Stefanidis D, Scerbo MW, Montero PN, et al. Simulator training to automaticity leads to improved skill transfer compared with traditional proficiency-based training: a randomized controlled trial. Ann Surg 2012;255:30−7.
56. Bansal VK, Raveendran R, Misra MC, et al. A prospective randomized controlled blinded study to evaluate the effect of short-term focused training program in laparoscopy on operating room performance of surgery residents. J Sur Educ 2014;71:52−60.
57. Buzink SN, Goossens RH, De Ridder H, et al. Training of basic laparoscopy skills on SimSurgery SEP. Minimally Invasive Therapy & Allied Technologies 2010;19;35−41.
Štítky
Surgery Orthopaedics Trauma surgeryČlánok vyšiel v časopise
Perspectives in Surgery
2016 Číslo 1
- Spasmolytic Effect of Metamizole
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole in perioperative treatment in children under 14 years – results of a questionnaire survey from practice
Najčítanejšie v tomto čísle
- Granulomatous inflammation in differential diagnosis of hepatobiliary malignancy
- Extragenital malignant Müllerian carcinosarcoma with invasion of inferior vena cava – a case report
- Transanal endoscopic microsurgery (TEM) − our experience
- Development of tracheal resection technique – our experience