#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Traumatic pneumothorax – diagnosis and treatment of 322 cases over a five-year period


Authors: J. Vodička 1;  V. Špidlen 1;  V. Třeška 1;  Š. Vejvodová 1;  J. Doležal 1;  A. Židková 2;  J. Škorpil 3
Authors place of work: Chirurgická klinika, Univerzita Karlova, LF v Plzni, FN Plzeň přednosta: prof. MUDr. V. Třeška, DrSc. 1;  Klinika anestezie, resuscitace a intenzivní medicíny, Univerzita Karlova, LF v Plzni, FN Plzeň přednosta: MUDr. R. Pradl, Ph. D. 2;  Kardiochirurgické oddělení FN Plzeň primář: MUDr. T. Hájek 3
Published in the journal: Rozhl. Chir., 2017, roč. 96, č. 11, s. 457-462.
Category: Original articles

Summary

Introduction:
Retrospective analysis of a set of patients treated for traumatic pneumothorax in the Trauma Centre of Teaching Hospital in Pilsen over a period of five years.

Method:
In total, 322 patients with traumatic pneumothorax were treated in the study period 2012−2016. The set included subjects whose injury fell within the definition of traumatic pneumothorax and who underwent either primary treatment or secondary transport to the Trauma Centre following basic treatment in another health facility on the day that the trauma occurred. The exclusion criterion was a pneumothorax <1 cm; in addition, patients with inconclusive findings from imaging screening were not included in the set. Basic demographic information, the mechanism, type and laterality of the traumatic pneumothorax, the Injury Severity Score, associated injuries, diagnostic procedures, timing, method and outcome of the treatment, as well as any complications and reoperations, were identified in the set. Other assessed information included deaths of patients with traumatic pneumothorax, including the cause and time of death in relation to the time of admission to the Trauma Centre.

Results:
The vast majority of traumatic pneumothoraces (94.1%) occurred as a result of blunt chest trauma, car accidents being the most common mechanism (about 28%). Closed pneumothoraces dominated (91.3%). Traumatic pneumothorax was part of a polytrauma in about one half of the injured. The average Injury Severity Score within the set was 20 points. Traumatic pneumothorax was diagnosed in more than three quarters of the patients based on clinical examination and computed tomography. The most common therapeutic procedure was drainage of the relevant pleural cavity (259 patients – 80.5%). Almost two thirds of surgical procedures were carried out within 1 hour of admission to the Trauma Centre. Complications associated with traumatic pneumothorax treatment were reported in 10.2% of the cases, and 33 reoperations were carried out. 15 patients (4.7%) in the set died, out of which 12 on the day of the trauma, all of them as a result of decompensated traumatic shock.

Conclusion:
Traumatic pneumothorax is a relatively frequent type of chest trauma found in up to half of the patients with chest trauma as part of a polytrauma. It usually occurs as closed pneumothorax as a result of blunt chest trauma. The diagnostic process is based on clinical examination and chest radiogram. However, ultrasound examination could be an alternative to chest radiogram in emergency situations. Computed tomography is the method of first choice for more serious traumas and inconclusive findings. To manage this condition, proper drainage of the relevant pleural cavity is sufficient in the vast majority of the patients. With timely diagnosis and adequate therapeutic intervention, the prognosis for patients with traumatic pneumothorax is favourable.

Key words:
traumatic pneumothorax – diagnosis – chest drainage


Zdroje

1. Vodička J a kol. Traumatologie hrudníku. Praha, Galén 2015.

2. Mennicke M, Gulati K, Oliva I, et al. Anatomical distribution of traumatic pneumothoraces on chest computed tomography: implications for ultrasound screening in the ED. Am J Emerg Med 2012;30:1025−31.

3. van As AB, Manganyi R, Brooks A. Treatment of thoracic trauma in children: literature review, Red Cross War Memorial Children Hospital data analysis, and guidelines for management. Eur J Pediatr Surg 2013;23:434−43.

4. Ismail MF, al-Refaie RI. Chest trauma in children, single center experience. Arch Bronconeumol 2012;48:362−6.

5. Lee LK, Rogers AJ, Ehrlich PF, et al. Pediatric Emergency Care Applied Research Network (PECARN). Occult pneumothoraces in children with blunt torso trauma. Acad Emerg Med 2014;21:440−8.

6. Abdulrahman Y, Musthafa S, Hakim SY, et al. Utility of extended FAST in blunt chest trauma: is it the time to be used in the ATLS algorithm? World J Surg 2015;39:172−8.

7. Lorkowski J, Teul I, Hładki W, et al. The evaluation of procedure and treatment outcome in patients with tension pneumothorax. Ann Acad Med Stetin 2014;60:10−5.

8. Vodička J, Doležal J, Vejvodová Š, et al. Poranění hrudníku a jeho operační léčba u polytraumatizovaných nemocných v pětiletém období. Acta Chir Orthop Traum Cech 2016;83:123−6.

9. Kong VY, Oosthuizen GV, Clarke DL. Selective conservatism in the management of thoracic trauma remains appropriate in the 21st century. Ann R Coll Surg Engl 2015;97:224−8.

10. Kong V, Sartorius B, Clarke D. Traumatic tension pneumothorax: experience from 115 consecutive patients in a trauma service in South Africa. Eur J Trauma Emerg Surg 2016;42:55−9.

11. Kong VY, Sartorius B, Clarke DL. The selective conservative management of penetrating thoracic trauma is still appropriate in the current era. Injury 2015;46:49−53.

12. Kirkpatrick AW, Rizoli S, Ouellet JF, et al. Canadian Trauma Trials Collaborative and the Research Committee of the Trauma Association of Canada. Occult pneumothoraces in critical care: a prospective multicenter randomized controlled trial of pleural drainage for mechanically ventilated trauma patients with occult pneumothoraces. J Trauma Acute Care Surg 2013;74:747−54.

13. Charbit J, Millet I, Maury C, et al. Prevalence of large and occult pneumothoraces in patients with severe blunt trauma upon hospital admission: experience of 526 cases in a French level 1 trauma center. Am J Emerg Med 2015;33:796−801.

14. Langdorf MI, Medak AJ, Hendey GW, et al. Prevalence and clinical import of thoracic injury identified by chest computed tomography but not chest radiography in blunt trauma: Multicenter prospective cohort study. Ann Emerg Med 2015;66:589−600.

15. Kwan RO, Miraflor E, Yeung L, et al. Bedside thoracic ultrasonography of the fourth intercostal space reliably determines safe removal of tube thoracostomy after traumatic injury. J Trauma Acute Care Surg 2012;73:1568−73.

16. Hyacinthe AC, Broux C, Francony G, et al. Diagnostic accuracy of ultrasonography in the acute assessment of common thoracic lesions after trauma. Chest. 2012;141:1177−83.

17. Alrajab S, Youssef AM, Akkus NI, et al. Pleural ultrasonography versus chest radiography for the diagnosis of pneumothorax: review of the literature and meta-analysis. Crit Care 2013;17:R208.

18. Kong VY, Liu M, Sartorius B, et al. Open pneumothorax: the spectrum and outcome of management based on Advanced Trauma Life Support recommendations. Eur J Trauma Emerg Surg. 2015;41:401−4.

19. Hecker M, Hegenscheid K, Völzke H, et al. Needle decompression of tension pneumothorax: Population-based epidemiologic approach to adequate needle length in healthy volunteers in Northeast Germany. J Trauma Acute Care Surg 2016;80:119−24.

20. Aho JM, Thiels CA, El Khatib MM, et al. Needle thoracostomy: Clinical effectiveness is improved using a longer angiocatheter. J Trauma Acute Care Surg 2016;80:272−7.

21. Clemency BM, Tanski CT, Rosenberg M, et al. Sufficient catheter length for pneumothorax needle decompression: a meta-analysis. Prehosp Disaster Med 2015;30:249−53.

22. de Lesquen H, Avaro JP, Gust L, et a. Surgical management for the first 48 h following blunt chest trauma: state of the art (excluding vascular injuries). Interact Cardiovasc Thorac Surg 2015;20:399−408.

23. Fiala P, Lischke R. Tupé poranění hrudníku. Rozhl Chir 2005;84:334–41.

24. Kong VY, Oosthuizen GV, Clarke DL. The selective conservative management of small traumatic pneumothoraces following stab injuries is safe: experience from a high-volume trauma service in South Africa. Eur J Trauma Emerg Surg 2015;41:75−9.

25. Vyhnánek F, Fanta J, Vojtíšek O, et al. Operace u tupého a pronikajícího poranění hrudníku. Rozhl Chir 2006;85:599–603.

26. Vyhnánek F. Diagnostické a léčebné postupy u torakoabdominálních poranění – současný stav. Rozhl Chir 2007;86:397–403.

27. Kulvatunyou N, Erickson L, Vijayasekaran A, et la. Randomized clinical trial of pigtail catheter versus chest tube in injured patients with uncomplicated traumatic pneumothorax. Br J Surg 2014;101:17−22.

28. Contou D, Razazi K, Katsahian S, et al. Small-bore catheter versus chest tube drainage for pneumothorax. Am J Emerg Med. 2012;30:1407−13.

29. Molnar TF. Thoracic trauma: Which chest tube when and where? Thorac Surg Clin 2017;27:13−23.

30. Kong VY, Sartorius B, Oosthuizen GV, et al. Prophylactic antibiotics for tube thoracostomy may not be appropriate in the developing world setting. Injury 2015;46:814−6.

31. Grigorescu D, Maghiar A. Efficacy of antibiotic prophylaxis for preventing intrathoracic infections, after thoracostomy, for traumatic haemo/pneumothorax – experience of Oradea county emergency hospital. Rev Med Chir Soc Med Nat Iasi 2012;116:1157−61.

32. Benns MV, Egger ME, Harbrecht BG, et al. Does chest tube location matter? An analysis of chest tube position and the need for secondary interventions. J Trauma Acute Care Surg 2015;78:386−90.

Štítky
Surgery Orthopaedics Trauma surgery
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#