Regeneration of ischemic tissue and improvement of blood supply using stem cells − up-to-date knowledge and potential use in no-option critical limb ischemia
Authors:
K. Houdek; J. Zeithaml; V. Třeška
Authors‘ workplace:
Chirurgická klinika, Univerzita Karlova, Lékařská fakulta v Plzni, Fakultní nemocnice Plzeň
Published in:
Rozhl. Chir., 2018, roč. 97, č. 9, s. 408-413.
Category:
Review
Overview
Introduction:
Cardiovascular disorders and their complications are the leading causes of death all over the world. The number of patients with critical limb ischemia and in risk of amputation is increasing together with increased incidence of cardiovascular diseases. In comparison with comparable population, the prognosis of patients after limb amputation is much worse. In case with no possible revascularisation, stem cell therapy offers a possible option for limb salvage.
Methods:
We collected relevant informations from published and accessible studies available on internet database Pubmed in period of 2007−2017. The key words stem cell and critical limb ischemia were used.
Conclusion:
Available informations show promising results in the use of stem cells in the treatment of no-option limb ischemia. Multicenter randomized clinical trials and unified recommendations and guidelines are needed to accept this method as available option for treatment. This article is presenting a short rewiev of circumstancies and conditions of this evolving method of treatment.
Key words:
stem cell − limb ischemia
Sources
-
Čechurová D, Rušavý Z. Diagnostika a léčba syndromu diabetické nohy pro praxi. Praha, Galén 2006.
-
Dubský M, Jirkovská A, Bem R, et al. Cell therapy of critical limb ischemia in diabetic patients – State of art. Diabetes Res Clin Pract 2017;126:263–271.
-
Minar E. Critical limb ischaemia. Hamostaseologie 2009;29:102−9.
-
Mahoney EM, Wang K, Keo HH, et al. Vascular hospitalization rates and costs in patients with peripheral artery disease in the United States. Circ CardiovascQual Outcomes 2010;3:642−51.
-
Norgren L, Hiatt WR, Dormandy JA, et al. Inter-society consensus for the management of peripheral arterial disease ( TASC II). Eur J Vasc Endovasc Surg 2007;33(Suppl. 1):S1−75.
-
Krajíček M, et al. Chirurgická a intervenční léčba cévních onemocnění. 1. vydání. Praha, Grada Publishing 2007.
-
Friedell ML. Current status of lower extremity revascularization. Current Problems in Surgery 2014;51:254–90.
-
Selvin E, Wattanakit K, Steffes MW, et al. HbA1c and peripheral arterial disease in diabetes: the Atherosclerosis risk in communities study. Diabetes Care 2006;29:877−82.
-
Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb ischemia by autologous transplantation of bone.marrow cells: a pilot study and a randomised controlled trial. Lancet 2002;360:427−35.
-
Ponemone V, Gupta S, Sethi D, et al. Safety and effectiveness of bone marrow cell concentrate in the treatment of chronic critical limb ischemia utilizing a rapid point-of-care system. Stem Cells Int 2017. Availeble from: doi: 10.1155/2017/4137626.
-
Rigato M, Monami M, Fadini GP. Autologous cell therapy for peripheral arterial disease: Systematic review and meta-analysis of randomized, nonrandomized, and noncontrolled studies. Circ Res 2017;120:1326−40.
-
Gu W, Hong X, Potter C, et al. Mesenchymal stem cells and vascular regeneration. Microcirculation 2017. Available from: doi: 10.1111/micc.12324.
-
Zhao L, Johnson T, Liu D. Therapeutic angiogenesis of adipose-derived stem cells for ischemic diseases. Stem Cell Res Ther 2017;8:125.
-
Prakash S, Shun-Tim D. Stem cell bioengineering and tissue engineering microenvironment. World Scientific 2011.
-
Čedíková M, Krakorová K, Miklíková M, et al. On-line atlas různých typů kmenových buněk a vybraných diferenciačních postupů. 2012. Available from: http://kmenova-bunka.webnode.cz/.
-
Weissman IL, Anderson DJ, Gage FH. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 2001;17:387−403.
-
Třeška V, Liška V, Fichtl J, et al. Portal vein embolisation with application of haematopoietic stem cells in patients with primarily or non-resectable colorectal liver metastases. Anticancer Res 2014;34:7279−85.
-
Fokoya AO. New delivery systems of stem cells for vascular regeneration in ischemia. Front Cardiovasc Med 2017. Available from: doi: 10.3389/fcvm.2017.00007.
-
Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. Embo J 1999;18:3964–72.
-
Ito WD, Arras M, Scholz D, et al. Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion. Am J Physiol 1997;42:H1255–H1265.
-
Kanq WCH, Oh PCH, Lee K, et al. Increasing injection frequency enhances the survival of injected bone marrow derived mesenchymal stem cells in a critical limb ischemia animal model. Korean J Physiol Pharmacol 2016;20:657−67.
-
Dubský M, Jirkovská A, Bem R, et al. Role of serum levels of angiogenic cytokines in assessment of angiogenesis after stem cell therapy of diabetic patients with critical limb ischemia. Cell Transplant 2014;23:1517−23.
-
Tournois C, Pignon B, Sevestre MA, et al. Cell therapy in critical limb ischemia: A comprehensive analysis of two cell therapy products. Cytotherapy 2017;19:299−310.
-
Procházka V, Gumulec J, Jalůvka F, et al. Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer. Cell Transplant 2010;19:1413−24.
-
Procházka V, Jurčíková J, Laššák O, et al. Therapeutic potential of adipose-derived therapeutic factor concentrate for treating critical limb schemia. Cell Transplant 2016;25:1623−33.
-
El Badawy A, Amer M, Abdelbaset R, et al. Adipose stem cells display higher regenerative capacities and more adaptable electro-kinetic properties compared to bone marrow-derived mesenchymal stromal cells. Sci Rep 2016. Available from: doi: 10.1038/srep37801.
-
Dubsky M, Jirkovska A, Bem R, et al. Both autologous bone marrow mononuclear cell and peripheral blood progenitor cell therapies similarly improve ischaemia in patients with diabetic foot in comparison with control treatment. Diabetes Metab Res Rev. 2013 Jul;29(5):369-76. doi: 10.1002/dmrr.2399.
-
Dubsky M, Jirkovska A, Bem R, et al. Comparison of the effect of stem cell therapy and percutaneous transluminal angioplasty on diabetic foot disease in patients with critical limb ischemia. Cytotherapy 2014;16:1733−8.
-
Mendicino M, Bailey AM, Wonnacott K, et al. MSC-based product characterization for clinical trials: an FDA perspective cell. Stem Cell 2014;14:141−5.
-
Fierro FA, Kolomoiris S, Sondergaard CS, et al. Effects on proliferation and differentiation of multipotent bone marrow stromal cells engineered to express growth factors for combined cell and gene therapy. Stem Cells 2011;29:1727−37.
-
Ankrum JA, Ong JF, Karp JM. Mesen-chymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 2014;32:252−60.
-
Molavi B, Zafarghandi MR, Aminizadeh E, et al. Safety and efficacy of repeated bone marrow mononuclear cell therapy in patients with critical limb ischemia in a pilot randomized controlled trial. Arch Iran Med 2016;19:388−96.
-
Madaric J, Klepanec A, Valachovicova M, et al. Characteristics of responders to autologous bone marrow cell therapy for no-option critical limb ischemia. Stem Cell Res Ther 2016. Available from: doi: 10.1186/s13287-016-0379-z.
-
Procházka V, Gumulec J, Chmelová J, et al. Autologous bone marrow stem cell transplantation in patients with end-stage chronical critical limb ischemia and diabetic foot. Vnitr Lek 2009;55:173−8.
-
Lee JH, Yoon YM, Lee SH. Hypoxic preconditioning promotes the bioactivities of mesenchymal stem cells via the HIF-1α-GRP78-Akt Axis. Int J Mol Sci 2017. Available from: doi: 10.3390/ijms18061320.
-
Madaric J, Valachovicova M, Paulis L, et al. Improvement in asymmetric dimethylarginine and oxidative stress in patients with limb salvage after autologous mononuclear stem cell application for critical limb ischemia. Stem Cell Res Ther 2017;8:165.
-
Beegle JR, Magner NL, Kalomoiris S, et al. Preclinical evaluation of mesenchymal stem cells overexpressing VEGF to treat critical limb ischemia. Molecular Therapy – Methods and Clinical Development 2016;3:16053.
-
Han KH, Kim AK, Kim D. Therapeutic potential of human mesenchymal stem cells for treating ischemic limb diseases. Int J Stem Cells 2016;9:163−8.
-
Tebebi PA, Kim SJ, Williams RA, et al. Improving the therapeutic efficacy of mesenchymal stromal cells to restore perfusion in critical limb ischemia through pulsed focused ultrasound. Sci Rep 2017;7:41550.
-
Lambert JM, Lopez EF, Lindsey ML. Macrophage roles following myocardial infarction. Int J Cardiol 2008;130:147−58.
Labels
Surgery Orthopaedics Trauma surgeryArticle was published in
Perspectives in Surgery
2018 Issue 9
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Current Insights into the Antispasmodic and Analgesic Effects of Metamizole on the Gastrointestinal Tract
Most read in this issue
- Celiac axis compression syndrome – diagnostic and surgical treatment
- Bipolar radiofrequency-induced thermotherapy of haemorrhoids: a 10-year experience
- Strategies preventing deep sternal wound infection in cardiac surgery − review
- Clear-cell sarcoma of tendons and aponeuroses in the right genitofemoral line – a case report