Animal models of liver diseases and their application in experimental surgery
Authors:
A. Malečková 1,2; Z. Tonar 1,2; P. Mik 3; K. Michalová 4; V. Liška 2,5; R. Pálek 2,5; J. Rosendorf 2,5; M. Králíčková 1,2; V. Třeška 5
Authors place of work:
Ústav histologie a embryologie, Lékařská fakulta v Plzni, Univerzita Karlova
1; Biomedicínské centrum, Lékařská fakulta v Plzni, Univerzita Karlova
2; Evropské centrum excelence NTIS, Fakulta aplikovaných věd, Západočeská univerzita v Plzni
3; Šiklův ústav patologie, Lékařská fakulta v Plzni, Univerzita Karlova
4; Chirurgická klinika, Fakultní nemocnice Plzeň, Lékařská fakulta v Plzni, Univerzita Karlova
5
Published in the journal:
Rozhl. Chir., 2019, roč. 98, č. 3, s. 100-109.
Category:
Review
Summary
Both acute and chronic liver diseases are frequent and potentially lethal conditions. Development of new therapeutic strategies and drugs depends on understanding of liver injury pathogenesis and progression, which can be studied on suitable animal models. Due to the complexity of liver injury, the understanding of underlying mechanisms of liver diseases and their treatment has been limited by the lack of satisfactory animal models. SO far, a wide variety of animals has been used to mimic human liver disease, however, none of the models include all its clinical aspects seen in humans. Rodents, namely rats and mice, represent the largest group of liver disease models despite their limited resemblance to human. On the other hand, large animal models like pigs, previously used mostly in acute liver failure modeling, are now playing an important role in studying various acute and chronic liver diseases. Although significant progress has been made, the research in hepatology should continue to establish animal models anatomically and physiologically as close to human as possible to allow for translation of the experimental results to human medicine. This review presents various approaches to the study of acute and chronic liver diseases in animal models, with special emphasis on large animal models and their role in experimental surgery.
Keywords:
liver disease – Animal models – experimental surgery – pig
Zdroje
- Van De Kerkhove MP, Hoekstra R, Van Gulik TM, et al. Large animal models of fulminant hepatic failure in artificial and bioartificial liver support research. Biomaterials 2004;25:1613–25.
- Rahman TM, Hodgson HJ. Animal models of acute hepatic failure. Int J Exp Pathol 2000;81:145–57.
- Newsome PN, Plevris JN, Nelson LJ, et al. Animal models of fulminant hepatic failure: a critical evaluation. Liver Transpl 2000;6:21–31.
- Liu Y, Meyer C, Xu C, et al. Animal models of chronic liver diseases. AJP Gastrointest. Liver Physiol 2013;304:G449–68.
- Starkel P, Leclercq IA. Animal models for the study of hepatic fibrosis. Best Pract Res Clin Gastroenterol 2011;25:319–33.
- Pálek R, Liška V, Třeška V, et al. Sinusoidal obstruction syndrome induced by monocrotaline in a large animal experiment – a pilot study. Rozhl Chir 2018;97:214–21.
- Fan YD, Praet M, Van Huysse J, et al. Effects of portal vein arterialization on liver regeneration after partial hepatectomy in the rat. Liver Transplant 2002;8:146–52.
- Zullo A, Cannistrà M, Cavallari G, et al. Liver regeneration induced by extracorporeal portal vein arterialization in a swine model of carbon tetrachloride intoxication. Transplant Proc 2015;47:2173–5.
- Hughes RD, Mitry RR, Dhawan A. Current status of hepatocyte transplantation. Transplantation 2012;93:342–7.
- Laleman W, Wilmer A, Evenepoel P, et al. Review article: Non-biological liver support in liver failure. Aliment Pharmacol Ther 2006;23:351–63.
- Ryska O, Pantoflíček T, Lásziková E, et al. Současný význam biologických a nebiologických eliminačních metod v léčbě akutního selhání jater. Rozhl Chir 2008;87:291–6.
- Losser M-R, Payen D. Mechanisms of liver damage. Semin Liver Dis 1996;16:357–67.
- Terblanche J, Hickman R. Animal models of fulminant hepatic failure. Dig Dis Sci 1991;36:770–4.
- Ladurner R, Hochleitner B, Schneeberger S, et al. Extended liver resection and hepatic ischemia in pigs: A new, potentially reversible model to induce acute liver failure and study artificial liver support systems. Eur Surg Res 2005;37:365–9.
- Sosef MN, Van Gulik TM. Total hepatectomy model in pigs: Revised method for vascular reconstruction using a rigid vascular prosthesis. Eur Surg Res 2004;36:8–12.
- Thiel C, Thiel K, Etspueler A, et al. Standardized intensive care unit management in an anhepatic pig model: new standards for analyzing liver support systems. Crit Care 2010;14:R138.
- Nieuwoudt M, Kunnike R, Smuts M, et al. Standardization criteria for an ischemic surgical model of acute hepatic failure in pigs. Biomaterials 2006;27:3836–45.
- Lee KU, Zheng L, Cho YB, et al. An experimental animal model of fulminant hepatic failure in pigs. J Korean Med Sci 2005;20:427–32.
- Saracyn M. Hepatoprotective effect of nitric oxide in experimental model of acute hepatic failure. World J Gastroenterol 2014;20:17407.
- Carvalho NR, Tassi CC, Dobraschinski F, et al. Reversal of bioenergetics dysfunction by diphenyl diselenide is critical to protection against the acetaminophen-induced acute liver failure. Life Sci 2017;180:42–50.
- Zhang S, Zhu Z, Wang Y, et al. Therapeutic potential of Bama miniature pig adipose stem cells induced hepatocytes in a mouse model with acute liver failure. Cytotechnology 2018;70:1131−41.
- Kalpana K, Ong HS, Soo KC, et al. An improved model of galactosamine-induced fulminant hepatic failure in the pig. J Surg Res 1999;82:121–30.
- Thiel C, Thiel K, Etspueler A, et al. A reproducible porcine model of acute liver failure induced by intrajejunal acetaminophen administration. Eur Surg Res 2011;46:118–26.
- Nayak NC, Chopra P, Dhar A, et al. Diverse mechanisms of hepatocellular injuries due to chemicals: evidence in rats administered carbon tetrachloride or dimethylnitrosamine. Br J Exp Pathol 1975;56:103–12.
- Ghosh Dastidar S, Warner J, Warner D, et al. Rodent models of alcoholic liver disease: Role of binge ethanol administration. Biomolecules 2018;8:3.
- Christen U, Holdener M, Hintermann E. Animal models of autoimmune hepatitis. Autoimmun Rev 2007;6:306–11.
- Oertelt S, Rieger R, Selmi C, et al. A sensitive bead assay for antimitochondrial antibodies: Chipping away at AMA-negative primary biliary cirrhosis. Hepatology 2007;45:659–65.
- Tanaka A, Leung PSC, Young HA, et al. Toward solving the etiological mystery of primary biliary cholangitis. Hepatol Commun 2017;1:275–87.
- Katsumi T, Tomita K, Leung PSC, et al. Animal models of primary biliary cirrhosis. Clin Rev Allergy Immunol 2015;48:142–53.
- Koarada S, Wu Y, Fertig N, et al. Genetic control of autoimmunity: Protection from diabetes, but spontaneous autoimmune biliary disease in a nonobese diabetic congenic strain. J Immunol. 2004;173:2315–23.
- Oertelt S, Lian Z-X, Cheng C-M et al. Anti-mitochondrial antibodies and primary biliary cirrhosis in TGF- receptor II dominant-negative mice. J Immunol 2006;177:1655–60.
- Wakabayashi K, Lian Z-X, Moritoki Y, et al. IL-2 receptor α−/− mice and the development of primary biliary cirrhosis. Hepatology 2006;44:1240–9.
- Wang JJ, Yang GX, Zhang WC, et al. Escherichia coli infection induces autoimmune cholangitis and anti-mitochondrial antibodies in non-obese diabetic (NOD).B6 (Idd10/Idd18) mice. Clin Exp Immunol 2014;175:192–201.
- Fausa O, Schrumpf E, Elgjo K. Relationship of inflammatory bowel disease and primary sclerosing cholangitis. Semin Liver Dis 1991;11:31–9.
- Pollheimer MJ, Fickert P. Animal models in primary biliary cirrhosis and primary sclerosing cholangitis. Clin Rev Allergy Immunol 2015;48:207–17.
- Santhekadur PK, Kumar DP, Sanyal AJ. Preclinical models of non-alcoholic fatty liver disease. J Hepatol 2018;68:230–7.
- Van Herck MA, Vonghia L, Francque SM. Animal models of nonalcoholic fatty liver disease—a starter’s guide. Nutrients 2017;9:1–13.
- Bukh J. A critical role for the chimpanzee model in the study of hepatitis C. Hepatology 2004;39:1469–75.
- Wieland SF. The chimpanzee model for hepatitis B virus infection. Cold Spring Harb. Perspect Med 2015;5:1–19.
- Moriya K, Fujie H, Shintani Y, et al. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med 1998;4:1065–7.
- Dandri M, Burda MR, Török E, et al. Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus. Hepatology 2001;33:981–8.
- Bissig K-D, Wieland SF, Tran P, et al. Human liver chimeric mice provide a model for hepatitis B and C virus infection and treatment. J Clin Invest 2010;120:924–30.
- Washburn ML, Bility MT, Zhang L, et al. A humanized mouse model to study hepatitis C virus infection, immune response, and liver disease. Gastroenterology 2011;140:1334–44.
- Billerbeck E, Mommersteeg MC, Shlomai A, et al. Humanized mice efficiently engrafted with fetal hepatoblasts and syngeneic immune cells develop human monocytes and NK cells. J Hepatol 2016;65:334–43.
- Vercauteren K, De Jong YP, Meuleman P. HCV animal models and liver disease. J Hepatol 2014;61:S26–33.
- Dandri M, Petersen J. Animal models of HBV infection. Best Pract Res Clin Gastroenterol 2017;31:273–9.
- Abd El Motteleb DM, Ibrahim IAAEH, Elshazly SM. Sildenafil protects against bile duct ligation induced hepatic fibrosis in rats: Potential role for silent information regulator 1 (SIRT1). Toxicol Appl Pharmacol 2017;335:64–71.
- Michalopoulos GK. Liver regeneration after partial hepatectomy. Am J Pathol 2010;176:2–13.
- Abrahamse SL, Van De Kerkhove MP, Sosef MN, et al. Treatment of acute liver failure in pigs reduces hepatocyte function in a bioartificial liver support system. Int J Artif Organs 2002;25:966–74.
- Lee J-H, Lee D-H, Lee S, et al. Functional evaluation of a bioartificial liver support system using immobilized hepatocyte spheroids in a porcine model of acute liver failure. Sci Rep 2017;7:3804. doi: 10.1038/s41598-017-03424-2.
- Lv G, Zhao L, Zhang A et al. Bioartificial liver system based on choanoid fluidized bed bioreactor improve the survival time of fulminant hepatic failure pigs. Biotechnol Bioeng 2011;108:2229–36.
- Sang J-F, Shi X-L, Han B, et al. Intraportal mesenchymal stem cell transplantation prevents acute liver failure through promoting cell proliferation and inhibiting apoptosis. Hepatobiliary Pancreat Dis Int 2016;15:602–11.
- He G-L, Feng L, Cai L, et al. Artificial liver support in pigs with acetaminophen-induced acute liver failure. World J Gastroenterol 2017;23:3262.
- Saxena R. Practical hepatic pathology: A diagnostic approach. Elsevier/Saunders, Philadelphia 2011.
- Hamid M, Abdulrahim Y, Liu D, et al. The hepatoprotective effect of selenium-enriched yeast and gum Arabic combination on carbon tetrachloride-induced chronic liver injury in rats. J. Food Sci 2018;83:525–34.
- Ma L, Yang X, Wei R, et al. MicroRNA-214 promotes hepatic stellate cell activation and liver fibrosis by suppressing Sufu expression. Cell Death Dis 2018;9:1–13.
- Alam MF, Safhi MM, Anwer T, et al. Therapeutic potential of Vanillylacetone against CCl4 induced hepatotoxicity by suppressing the serum marker, oxidative stress, inflammatory cytokines and apoptosis in Swiss albino mice. Exp Mol Pathol 2018;105:81–8.
- Sung YC, Liu YC, Chao PH, et al. Combined delivery of sorafenib and a MEK inhibitor using CXCR4-targeted nanoparticles reduces hepatic fibrosis and prevents tumor development. Theranostics 2018;8:894–905.
- Czechowska G, Celinski K, Korolczuk A, et al. Protective effects of melatonin against thioacetamide-induced liver fibrosis in rats. J Physiol Pharmacol 2015;66:567–79.
- Mazagova M, Wang L, Anfora AT, et al. Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice. FASEB J 2015;29:1043–55.
- Chandel R, Saxena R, Das A, et al. Association of rno-miR-183-96-182 cluster with diethyinitrosamine induced liver fibrosis in Wistar rats. J Cell Biochem 2018;119:4072–84.
- Jilkova ZM, Kuyucu AZ, Kurma K, et al. Combination of AKT inhibitor ARQ 092 and sorafenib potentiates inhibition of tumor progression in cirrhotic rat model of hepatocellular carcinoma. Oncotarget 2018;9:11145–58.
- Marrone AK, Shpyleva S, Chappell G, et al. Differentially expressed microRNAs provide mechanistic insight into fibrosis-associated liver carcinogenesis in mice. Mol Carcinog 2016;55:808–17.
- King PD, Perry MC. Hepatotoxicity of chemotherapy. Oncologist 2001;6:162–76.
- Nakamura K, Hatano E, Narita M, et al. Sorafenib attenuates monocrotaline-induced sinusoidal obstruction syndrome in rats through suppression of JNK and MMP-9. J. Hepatol 2012;57:1037–43.
- Robinson SM, Mann DA, Manas DM, et al. The potential contribution of tumour-related factors to the development of FOLFOX-induced sinusoidal obstruction syndrome. Br J Cancer 2013;109:2396–403.
- Bruha J, Vycital O, Tonar Z, et al. Monoclonal antibody against transforming growth factor beta 1 does not influence liver regeneration after resection. Large Animal Experiments 2015;340:327–40.
- Chen X, Ying X, Sun W, et al. The therapeutic effect of fraxetin on ethanol-induced hepatic fibrosis by enhancing ethanol metabolism, inhibiting oxidative stress and modulating inflammatory mediators in rats. Int Immunopharmacol 2018;56:98–104.
- Choi Y, Abdelmegeed MA, Song BJ. Preventive effects of indole-3-carbinol against alcohol-induced liver injury in mice via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms: Role of gut-liver-adipose tissue axis. J Nutr Biochem 2018;55:12–25.
Štítky
Surgery Orthopaedics Trauma surgeryČlánok vyšiel v časopise
Perspectives in Surgery
2019 Číslo 3
- Metamizole at a Glance and in Practice – Effective Non-Opioid Analgesic for All Ages
- Metamizole vs. Tramadol in Postoperative Analgesia
- Spasmolytic Effect of Metamizole
Najčítanejšie v tomto čísle
- Current view on prostheses in herniology (hernia meshes) – classifications, indications, advantages and disadvantages of different implants, complications J. Skach, M. Slamborova, V. Blecher, P. Hromadka, R. Gurlich
- Hip synovial cyst presenting as femoral hernia – case report
- Distal intestinal obstruction syndrome in a patient with cystic fibrosis after lung transplantation
- Zemřel primář Michal Leško