#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

3D printed synthetic models for training minimally invasive pediatric surgery – our own experience and literature review


Authors: P. Zahradnikova 1;  M. Lindák 1;  P. Vitovič 2;  M. Laurovičová 2;  T. Tvrdoň 3;  S. Hnilicová 2;  J. Babala 1
Authors‘ workplace: Klinika detskej chirurgie, LF UK a NÚDCH, Bratislava, Slovensko 1;  Ústav medicínskeho, vzdelávania a simulácií, LF UK v Bratislave, Slovensko 2;  Oddelenie detskej, neurochirurgie, Detská, neurochirurgia –, Neurocentrum, NÚDCH, Bratislava, Slovensko 3
Published in: Rozhl. Chir., 2025, roč. 104, č. 1, s. 11-19.
Category: Review
doi: https://doi.org/10.48095/ccrvch202511

Overview

Summary

Pediatric surgery is a medical specialty focused on the diagnosis, treatment, and postoperative care of children with congenital and acquired anomalies and diseases. The goal of pediatric surgeons is to ensure that children receive the best possible care while minimizing the risks and complications associated with surgical procedures. Contemporary pediatric surgeons face many challenges, including a decline in the number of children with congenital developmental defects, economic pressures, and efforts to increase efficiency, leading to reduced time spent on individual surgeries. This can limit the opportunity for thorough training of young surgeons. These challenges require innovative approaches and continuous improvement in educational and training methods. Minimally invasive surgery has become a significant part of pediatric surgery, offering benefits such as faster recovery, smaller surgical wounds, and lower risk of infection. However, minimally invasive pediatric surgery is technically demanding and requires excellent technical skills. The need to maintain and improve surgical skills demands ongoing training. Current educational methods increasingly rely on simulation technologies to enhance the quality and safety of training without risk to patients. The integration of 3D printing technology and imaging data from CT and MRI scans has opened new possibilities for creating highly realistic simulation models for minimally invasive surgery. These models accurately replicate the environment encountered in procedures like neonatal surgery. In this article, we present our experience with the development and creation of 3D-printed synthetic models designed for training thoracoscopic surgery of esophageal atresia with tracheoesophageal fistula. The aim of this review article is to provide an up-to-date overview of the literature on synthetic 3D-printed models designed for training in minimally invasive pediatric surgery.

Keywords:

Simulation – Minimally invasive surgery – 3D model – pediatric surgery – esophageal atresia


Sources

1.           Gause CD, Grace Hsiung G, Schwab B et al. Advances in pediatric surgical education: a critical ap praisal of two consecutive minimally invasive pediatric surgery training courses. J Laparoendosc Adv Surg Tech A 2016; 26(8): 663–670. doi: 10.1089/lap.2016.0249.

2.           Esposito C, Escolino M, Saxena A et al. European society of pediatric endoscopic surgeons (ESPES) guidelines for training program in pediatric minimally invasive surgery. Pediatr Surg Int 2015; 31(4): 367–373. doi: 10.1007/s00383-015-3672-5.

3.           Montbrun SL, Helen MR. Simulation in surgical education. Clin Colon Rectal Surg 2012; 25(3): 156–165. doi: 10.1055/s-0032-1322553.

4.           Irfan W, Shean C, Mitchel EL et al. The pathway to a national vascular skills examination and the role of simulation-based training in an increasingly complex specialty. Semin Vasc Surg 2019; 32(1–2): 48–67. doi: 10.1053/j.semvascsurg.2018.12.006.

5.           Andreatta PB, Woodroom DT, Birkmeyer JD et al. Laparoscopic skills are improved with LapMentor training: results of a randomized, double-blinded study. Ann Surg 2006; 243(6): 854–860. doi: 10.1097/01.sla.0000219641.79092.e5.

6.           Esposito C, Escolino M, Dragici I et al. Training models in pediatric minimally invasive surgery: Rabbit model versus Porcine model: a comparative study. J Laparoendosc Adv Surg Tech A 2016; 26(1): 79–84. doi: 10.1089/lap.2015.0229.

7.           Hrubovčák J, Tulinský L, Pieš M et al. The utilization of 3D printing in surgery as an innovative approach to preoperative planning. Rozhl Chir 2024; 103(8): 305–312. doi: 10.48095/ccrvch2024305.

8.           Joosten M, Blaauw I, Botden SM et al. Validated simulation models in pediatric surgery: a review. J Pediatr Surg 2022; 57(12): 876–886. doi: 10.1016/j.jpedsurg.2022.06.015.

9.           Badash I, Burt K, Solorzano CA et al. Innovations in surgery simulation: a review of past, current and future techniques. Ann Transl Med 2016; 4(23): 453. doi: 10.21037/atm.2016.12.24.

10.         Rothenberg S. Thoracoscopic repair of esophageal atresia and tracheo-esophageal fistula in neonates: evolution of a technique. J Laparoendosc Adv Surg Tech A 2012; 22(2): 195–199. doi: 10.1089/lap.2011.0063.

11.         Nair D, Well J, Cook N et al. Critical design and validation considerations for the development of neonatal minimally invasive surgery simulators. J Pediatr Surg 2019; 54(11): 2448–2452. doi: 10.1016/j.jpedsurg.2019.05.022.

12.         Nedomova B. Celková anestézia a neurotoxicita: aké sú naše poznatky? Pediatria Prax 2018; 19(4): 165–168.

13.         Nedomova B, Hargaš M. Základné princípy anestézie u novorodencov. Pediatria Prax 2019; 20(3): 108–111.

14.         Barsness A, Roney D, Davis ML et al. Evaluation of three sources of validity evidence for a synthetic thoracoscopic esophageal atresia/tracheoesophageal fistula repair simulator. J Laparoendosc Adv Surg Tech A 2015; 25(7): 599–604. doi: 10.1089/lap.2014.0370.

15.         Maricic AM, Bailez MM, Rodriguez SP et al. Validation of an inanimate low cost model for training minimal invasive surgery (MIS) of esophageal atresia with tracheoesophageal fistula (AE/TEF) repair. J Pediatr Surg 2016; 51(9): 1429–1435. doi: 10.1016/j.jpedsurg.2016.04.018.

16.         Neville JJ, Chacon C, Haghighi-Osgouei R et al. Development and validation of a novel 3D-printed simulation model for open oesophageal atresia and tracheo-oesophageal fistula repair. Pediatr Surg Int 2022; 38(1): 133–141. doi: 10.1007/s00383-021-05007-9.

17.         Harada K, Takazawa S, Tsukuda Y et al. Quantitative pediatric surgical skill assessment using a rapid-prototyped chest model. Minim Invasive Ther Allied Technol 2015; 24(4): 226–232. doi: 10.3109/13645706.2014.996161.

18.         Takazawa S, Tetsuya I, Kanako H et al. Pediatric thoracoscopic surgical simulation using a rapid-prototyped chest model and motion sensors can better identify skilled surgeons than a conventional box trainer. J Laparoendosc Adv Surg Tech A 2016; 26(9): 740–747. doi: 10.1089/lap.2016.013.

19.         Ljuhar D, Samuel A, Sarah M et al. The laparoscopic inguinal and diaphragmatic defect (LIDD) model: a validation study of a novel box trainer model. Surg Endosc 2018; 32(12): 4813–4819. doi: 10.1007/s00464-018-6232-y.

20.         Obata S, Satoshi I, Munenori U et al. An endoscopic surgical skill validation system for pediatric surgeons using a model of congenital diaphragmatic hernia repair. J Laparoendosc Adv Surg Tech A 2015; 25(9): 775–781. doi: 10.1089/lap.2014.0259.

21.         Barsness KA, Rooney DM, Davis LM et al. The development and evaluation of a novel thoracoscopic diaphragmatic hernia repair simulator. J Laparoendosc Adv Surg Tech A 2013; 23(8): 714–718. doi: 10.1089/lap.2013.0196.

22.         Jimbo T, Ieiri S, Obata S et al. A new innovative laparoscopic fundoplication training simulator with a surgical skill validation system. Surg Endosc 2017; 31(4): 1688–1696. doi: 10.1007/s00464-016-5159-4.

23.         Williams A, Morgan M, Ahlinet J et al. A simulated training model for laparoscopic pyloromyotomy: is 3D printing the way of the future? J Pediatr Surg 2018; 53(5): 937–941. doi: 10.1016/j.jpedsurg.2018.02.016.

24.         Ordorica-Flores R, Orpinel-Armendariz E, Rodríguez-Reyna R et al. Development and preliminary validation of a rabbit model of duodenal atresia for training in pediatric surgical skills. Surg Innov 2019; 26(6): 738–743. doi: 10.1177/1553350619881068.

25.         Barsness KA, Rooney MD, Davis ML et al. Evaluation of three sources of validity evidence for a laparoscopic duodenal atresia repair simulator. J Laparoendosc Adv Surg Tech A 2015; 25(3): 256–260. doi: 10.1089/lap.2014.0358.

26.         Torres A, Inzunza M, Jarry C et al. Development and validation of a new laparoscopic endotrainer for neonatal surgery and reduced spaces. Arq Bras Cir Dig 2020; 33(4): e1559. doi: 10.1590/0102-672020200004e1559.

27.         Trudeau MO, Carrillo B, Nasr A et al. Educational role for an advanced suturing task in the pediatric laparoscopic surgery simulator. J Laparoendosc Adv Surg Tech A 2017; 27(4): 441–446. doi: 10.1089/lap.2016.0516.

28.         Moorhead AA, Nair D, Morison CH et al. Development of an instrumented thoracoscopic surgical trainer for objective evaluation of esophageal atresia/tracheoesophageal fistula repair. Med Biol Eng Comput 2020; 58(3): 601–609. doi: 10.1007/s11517-019-02107-6.

29.         Matlow AG, Baker GR, Flintoft V et al. Adverse events among children in Canadian hospitals: the Canadian Paediatric Adverse Events Study. CMAJ 2012; 184(13): E709–E718. doi: 10.1503/cmaj.112153.

30.         Schout BM, Hendrikx AJ, Scheele F et al. Validation and implementation of surgical simulators: a critical review of present, past, and future. Surg Endosc 2010; 24(3): 536–546. doi: 10.1007/s00464-009-0634-9.

31.         Davidson EL, Penniston KL, Farhat VA et al. Advancements in surgical education: exploring animal and simulation models in fetal and neonatal surgery training. Front Pediatr 2024; 12: 1402596. doi: 10.3389/fped.2024.1402596.

32.         Nasr A, Gerstle JT, Carrillo B et al. The pediatric laparoscopic surgery (PLS) simulator: methodology and results of further validation. J Pediatr Surg 2013; 48(10): 2075–2077. doi: 10.1016/j.jpedsurg.2013.01.039.

33.         Djurhuus JC, Wu HY, Fossum M. A conversation on how animal experimental studies allies with translational medicine. J Pediatr Urol 2021; 17(5): 622–629. doi: 10.1016/j.jpurol.2021.07.029.

34.         Tsai AY, Greene AC. 3D printing in pediatric surgery. Semin Pediatr Surg 2024; 33(1): 151385. doi: 10.1016/j.sempedsurg.2024.151385.

35.         Cheung CL, Looi T, Lendvay TS et al. Use of 3-dimensional printing technology and silicone modeling in surgical simulation: development and face validation in pediatric laparoscopic pyeloplasty. J Surg Educ 2014; 71(5): 762–767. doi: 10.1016/j.jsurg.2014.03.001.

36.         McGaghie WC, Issenberg BS, Petrusa ER et al. A critical review of simulation-based medical education research: 2003–2009. Med Educ 2010; 44(1): 50–63. doi: 10.1111/j.1365-2923.2009.03547.x.

37.         Chovanec M, Krtička M, Šrámek J et al. Současné klinické aplikace 3D tisku v managementu komplexních zlomenin. Rozhl Chir 2024; 103(5): 158–166. doi: 10.33699/PIS.2024.103.5.158–166.

Labels
Surgery Orthopaedics Trauma surgery
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#