#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Motor imagery – its neural principle and possibilities of its use in physiotherapy


Authors: Haltmar H. 1,2,3;  Kolářová B. 2,3,4;  Haltmar M. 2,3,4;  Janura M. 1
Authors place of work: Katedra přírodních věd v kinantropologii, Fakulta tělesné kultury, Univerzita Palackého v Olomouci 1;  Ústav klinické rehabilitace, Fakulta zdravotnických věd, Univerzita Palackého v Olomouci 2;  Kineziologická laboratoř, Oddělení rehabilitace, Fakultní nemocnice Olomouc 3;  Neurologická klinika, Lékařská fakulta, Univerzita Palackého v Olomouci a Fakultní nemocnice Olomouc 4
Published in the journal: Rehabil. fyz. Lék., 29, 2022, No. 3, pp. 130-135.
Category: Review Article
doi: https://doi.org/10.48095/ccrhfl2022130

Summary

Motor imagery or simulating the movement in the mind without actually performing it is part of planning and preparing the movement. The difference between motor imagery and motor execution is in the inhibition of the actual motor execution. Motor imagery shares similar neural activation with motor execution. Based on this similarity, which is still an object of interest, it is used in the training of professional athletes and in the physiotherapy of neurological or orthopaedic patients to facilitate motor learning and improve the quality of movement execution.

Keywords:

rehabilitation – motor control – motor imagery – motor execution – motor imagery control


Zdroje

1. Jeannerod M. The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci 1994; 17(2): 187–202. doi: 10.1017/S0140525X00034026.

2. Mulder T. Motor imagery and action observation: cognitive tools for rehabilitation. J Neural Transm 2007; 114(10): 1265–1278. doi: 10.1007/s00702-007-0763-z.

3. Hanakawa T. Organizing motor imageries. Neurosci Res 2016; 104: 56–63. doi: 10.1016/j.neures.2015.11.003.

4. Oh DS, Choi JD. Effects of motor imagery train­ing on balance and gait in older adults: a randomized controlled pilot study. Int J Environ Res Public Health 2021; 18(2): 650. doi: 10.3390/ijerph18020650.

5. Ridderinkhof KR, Brass M. How Kinesthetic Motor Imagery works: a predictive-processing theory of visualization in sports and motor expertise. J Physiol Paris 2015; 109(1–3): 53–63. doi: 10.1016/j.jphysparis.2015.02.003.

6. Lotze M, Halsband U. Motor imagery. J Physiol Paris 2006; 99(4–6): 386–395. doi: 10.1016/j.jphysparis.2006.03.012.

7. Hardwick RM, Caspers S, Eickhoff SB et al. Neu­ral correlates of action: comparing meta-analyses of imagery, observation, and execution. Neurosci Biobehav Rev 2018; 94: 31–44. doi: 10.1016/j.neubiorev.2018.08.003.

8. Hétu S, Grégoire M, Saimpont A et al. The neural network of motor imagery: an ALE meta-analy­sis. Neurosci Biobehav Rev 2013; 37(5): 930–949. doi: 10.1016/j.neubiorev.2013.03.017.

9. Loporto M, McAllister C, Williams J et al. Investigating central mechanisms underlying the effects of action observation and imagery through transcranial magnetic stimulation. J Mot Behav 2011; 43(5): 361–373. doi: 10.1080/00222895.2011.604655.

10. Bakker M, de Lange FP, Stevens JA et al. Motor imagery of gait: a quantitative ap­proach. Exp Brain Res 2007; 179(3): 497–504. doi: 10.1007/s00221-006-0807-x.

11. Hanakawa T, Immisch I, Toma K et al. Functional properties of brain areas associated with motor execution and imagery. J Neurophysiol 2003; 89(2): 989–1002. doi: 10.1152/jn.00132.2002.

12. Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. Neuroimage 2001; 14(1 Pt 2): 103–109. doi: 10.1006/nimg.2001.0832.

13. Cengiz B, Boran HE. The role of the cerebel­lum in motor imagery. Neurosci Lett 2016; 617: 156–159. doi: 10.1016/j.neulet.2016.01.045.

14. Decety J. The neurophysiological basis of motor imagery. Behav Brain Res 1996; 77(1–2): 45–52. doi: 10.1016/0166-4328(95)00225-1.

15. Di Rienzo F, Guillot A, Daligault S et al. Motor inhibition during motor imagery: a MEG study with a quadriplegic pa­tient. Neurocase 2014; 20(5): 524–539. doi: 10.1080/13554794.2013.826685.

16. Solodkin A, Hlustik P, Chen EE et al. Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex 2004; 14(11): 1246–1255. doi: 10.1093/cercor/bhh086.

17. Guillot A, Lebon F, Rouffet D et al. Muscular responses during motor imagery as a function of muscle contraction types. Int J Psychophysiol 2007; 66(1): 18–27. doi: 10.1016/j.ijpsycho.2007.05.009.

18. Guillot A, Collet C. Contribution from neurophysiological and psychological methods to the study of motor imagery. Brain Res Brain Res Rev 2005; 50(2): 387–397. doi: 10.1016/j.brainresrev.2005.09.004.

19. Nachev P, Kennard C, Husain M. Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 2008; 9(11): 856–869. doi: 10.1038/nrn2478.

20. Fogassi L, Luppino G. Motor functions of the parietal lobe. Curr Opin Neurobiol 2005; 15(6): 626–631. doi: 10.1016/j.conb.2005.10.015.

21. Sunderland A, Wilkins L, Dineen R et al. Tool-use and the left hemisphere: what is lost in ideomotor apraxia? Brain Cogn 2013; 81(2): 183–192. doi: 10.1016/j.bandc.2012.10.008.

22. Heilman KM, Rothi LJG. Apraxia. In: Heilman KM, Valenstein E (eds). Clinical Neuropsychology. 5th ed. Oxford University Press 1993: 141–164.

23. Buxbaum LJ, Johnson-Frey SH, Bartlett-Wil­liams M. Deficient internal models for planning hand-object interactions in apraxia. Neuropsychologia 2005; 43(6): 917–929. doi: 10.1016/j.neuropsychologia.2004.09.006.

24. Grèzes J, Decety J. Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analy­sis. Hum Brain Mapp 2001; 12(1): 1–19. doi: 10.1002/1097-0193(200101)12:1<1::aid-hbm10>3.0.co;2-v.

25. Jafari M, Aflalo T, Chivukula S et al. The human primary somatosensory cortex encodes imagined movement in the absence of sensory information. Commun Biol 2020; 3(1): 757. doi: 10.1038/s42003-020-01484-1.

26. Hanakawa T, Dimyan MA, Hallett M. Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. Cereb Cortex 2008; 18(12): 2775–2788. doi: 10.1093/cercor/bhn036.

27. Grillner S, Hellgren J, Ménard A et al. Mechanisms for selection of basic motor programs – roles for the striatum and pallidum. Trends Neurosci 2005; 28(7): 364–370. doi: 10.1016/j.tins.2005.05.004.

28. Takakusaki K. Functional neuroanatomy for posture and gait control. J Mov Disord 2017; 10(1): 1–17. doi: 10.14802/jmd.16062.

29. Jahn K, Deutschländer A, Stephan T et al. Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage 2004; 22(4): 1722–1731. doi: 10.1016/j.neuroimage.2004.05.017.

30. Kilteni K, Andersson BJ, Houborg C et al. Motor imagery involves predicting the sensory consequences of the imagined movement. Nat Commun 2018; 9(1): 1617. doi: 10.1038/s41467-018-03989-0.

31. Collet C, Di Rienzo F, El Hoyek N et al. Autonomic nervous system correlates in movement observation and motor imagery. Front Hum Neurosci 2013; 7: 415. doi: 10.3389/fnhum.2013.00415.

32. Zapparoli L, Sacheli LM, Seghezzi S et al. Motor imagery training speeds up gait recovery and decreases the risk of falls in patients submitted to total knee arthroplasty. Sci Rep 2020; 10(1): 8917. doi: 10.1038/s41598-020-65820-5.

33. Salik Sengul Y, Kaya N, Yalcinkaya G et al. The effects of the addition of motor imagery to home exercises on pain, disability and psychosocial parameters in patients undergoing lumbar spinal surgery: a randomized control­led trial. Explore (NY) 2021; 17(4): 334–339. doi: 10.1016/j.explore.2020.02.001.

34. Ruffino C, Papaxanthis C, Lebon F. Neural plasticity during motor learning with motor imagery practice: review and perspectives. Neuroscience 2017; 341: 61–78. doi: 10.1016/j.neuroscience.2016.11.023.

35. López ND, Monge Pereira E, Centeno EJ et al. Motor imagery as a complementary technique for functional recovery after stroke: a systematic review. Top Stroke Rehabil 2019; 26(8): 576–587. doi: 10.1080/10749357.2019.1640000.

36. Hall CR, Martin KA. Measuring movement imagery abilities: a revision of the Movement Imagery Questionnaire. J Ment Imagery 1997; 21(1–2): 143–154.

37. Monsma E, Short S, Hall C et al. Psychometric properties of the Revised Movement Imagery Questionnaire (MIQ-R). J Imagery Res Sport Phys Activ 2009; 4(1). doi: 10.2202/1932-0191.1027.

38. Suica Z, Platteau-Waldmeier P, Koppel S et al. Motor imagery ability assessments in four disciplines: protocol for a systematic review. BMJ Open 2018; 8(12): e023439. doi: 10.1136/bmjopen-2018-023439.

39. Harris JE, Hebert A. Utilization of motor imagery in upper limb rehabilitation: a system­atic scoping review. Clin Rehabil 2015; 29(11): 1092–1107. doi: 10.1177/0269215514566248.

40. Naito E, Kochiyama T, Kitada R et al. Internally simulated movement sensations during motor imagery activate cortical motor areas and the cerebellum. J Neurosci 2002; 22(9): 3683–3691. doi: 10.1523/JNEUROSCI.22-09-03683.2002.

41. Stinear CM, Byblow WD, Steyvers M et al. Kin­esthetic, but not visual, motor imagery modulates corticomotor excitability. Exp Brain Res 2006; 168(1–2): 157–164. doi: 10.1007/s00221-005-0078-y.

42. Holmes PS, Collins DJ. The PETTLEP ap­proach to motor imagery: a functional equivalence model for sport psychologists. J Appl Sport Psychol 2001; 13(1): 60–83. doi: 10.1080/10413200109339004.

43. Stockley RC, Jarvis K, Boland P et al. System­atic review and meta-analysis of the effectiveness of mental practice for the upper limb after stroke: imag­ined or real benefit? Arch Phys Med Rehabil 2021; 102(5): 1011–1027. doi: 10.1016/j.apmr.2020.09.391.

44. Chaudhary U, Birbaumer N, Ramos-Murguialday A. Brain-computer interfaces for communication and rehabilitation. Nat Rev Neurol 2016; 12(9): 513–525. doi: 10.1038/nrneurol.2016.113.

45. Frolov AA, Mokienko O, Lyukmanov R et al. Post-stroke Rehabilitation training with a Motor-Imagery-Based Brain-Computer Interface (BCI) – controlled hand exoskeleton: a random­ized controlled multicenter trial. Front Neurosci 2017; 11: 400. doi: 10.3389/fnins.2017.00400.

Štítky
Physiotherapist, university degree Rehabilitation Sports medicine
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#