#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Serial type-specific human papillomavirus (HPV) load measurement allows differentiation between regressing cervical lesions and serial virion productive transient infections


Abstract:
Persistent high-risk human papillomavirus (HPV) infection is strongly associated with the development of high-grade cervical intraepithelial neoplasia (CIN) or cancer. Not all persistent infections lead to cancer. Viral load measured at a single time-point is a poor predictor of the natural history of HPV infections. However the profile of viral load evolution over time could distinguish nonprogressive from progressive (carcinogenic) infections. A retrospective natural history study was set up using a Belgian laboratory database including more than 800,000 liquid cytology specimens. All samples were submitted to qPCR identifying E6/E7 genes of 18 HPV types. Viral load changes over time were assessed by the linear regression slope. Database search identified 261 untreated women with persistent type-specific HPV DNA detected (270 infections) in at least three of the last smears for a average period of 3.2 years. Using the coefficient of determination (R²) infections could be subdivided in a latency group (n = 143; R² < 0.85) and a regressing group (n = 127; R² ≥ 0.85). In (≥3) serial viral load measurements, serial transient infections with latency is characterized by a nonlinear limited difference in decrease or increase of type-specific viral load (R² < 0.85 and slopes between 2 measurements 0.0010 and −0.0010 HPV copies/cell per day) over a longer period of time (1553 days), whereas regression of a clonal cell population is characterized by a linear (R² ≥ 0.85) decrease (−0.0033 HPV copies/cell per day) over a shorter period of time (708 days; P < 0.001). Using serial HPV type-specific viral load measurements we could for the first time identify regressing CIN2 and CIN3 lesions. Evolution of the viral load is an objective measurable indicator of the natural history of HPV infections and could be used for future triage in HPV-based cervical screening programs.

Keywords:
Cervical intraepithelial neoplasia; latency; liquid-based cytology; primary cervical cancer screening; real-time quantitative PCR


Autoři: Christophe E. Depuydt 1,*;  Jef Jonckheere 1;  Mario Berth 2;  Geert M. Salembier 1;  Annie J. Vereecken Andjohannes J. Bogers 1 1,3
Působiště autorů: Department of Molecular Diagnostics, AML, Sonic Healthcare, Antwerp, Belgium 1;  Department of Immunology, AML, Sonic Healthcare, Antwerp, Belgium 2;  Laboratory for Cell Biology and Histology, University of Antwerp, Antwerp, Belgium 3
Vyšlo v časopise: Cancer Medicine 2015; 4(8)
Kategorie: Original Research
prolekare.web.journal.doi_sk: https://doi.org/10.1002/cam4.473

© 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

Souhrn

Abstract:
Persistent high-risk human papillomavirus (HPV) infection is strongly associated with the development of high-grade cervical intraepithelial neoplasia (CIN) or cancer. Not all persistent infections lead to cancer. Viral load measured at a single time-point is a poor predictor of the natural history of HPV infections. However the profile of viral load evolution over time could distinguish nonprogressive from progressive (carcinogenic) infections. A retrospective natural history study was set up using a Belgian laboratory database including more than 800,000 liquid cytology specimens. All samples were submitted to qPCR identifying E6/E7 genes of 18 HPV types. Viral load changes over time were assessed by the linear regression slope. Database search identified 261 untreated women with persistent type-specific HPV DNA detected (270 infections) in at least three of the last smears for a average period of 3.2 years. Using the coefficient of determination (R²) infections could be subdivided in a latency group (n = 143; R² < 0.85) and a regressing group (n = 127; R² ≥ 0.85). In (≥3) serial viral load measurements, serial transient infections with latency is characterized by a nonlinear limited difference in decrease or increase of type-specific viral load (R² < 0.85 and slopes between 2 measurements 0.0010 and −0.0010 HPV copies/cell per day) over a longer period of time (1553 days), whereas regression of a clonal cell population is characterized by a linear (R² ≥ 0.85) decrease (−0.0033 HPV copies/cell per day) over a shorter period of time (708 days; P < 0.001). Using serial HPV type-specific viral load measurements we could for the first time identify regressing CIN2 and CIN3 lesions. Evolution of the viral load is an objective measurable indicator of the natural history of HPV infections and could be used for future triage in HPV-based cervical screening programs.

Keywords:
Cervical intraepithelial neoplasia; latency; liquid-based cytology; primary cervical cancer screening; real-time quantitative PCR


Zdroje

1. Arbyn, M., X. Castellsague, S. S. de, L. Bruni, M. Saraiya, F. Bray, et al. 2011. Worldwide burden of cervical cancer in 2008. Ann. Oncol. 22:2675–2686.

2. Ylitalo, N., P. Sorensen, A. M. Josefsson, P. K. Magnusson, P. K. Andersen, J. Ponten, et al. 2000. Consistent high viral load of human papillomavirus 16 and risk of cervical carcinoma in situ: a nested case-control study. Lancet 355:2194–2198.

3. Bosch, F. X., A. Lorincz, N. Munoz, C. J. Meijer, and K. V. Shah. 2002. The causal relation between human papillomavirus and cervical cancer. J. Clin. Pathol. 55:244–265.

4. Walboomers, J. M., M. V. Jacobs, M. M. Manos, F. X. Bosch, J. A. Kummer, K. V. Shah, et al. 1999. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189:12–19.

5. Nobbenhuis, M. A., J. M. Walboomers, T. J. Helmerhorst, L. Rozendaal, A. J. Remmink, E. K. Risse, et al. 1999. Relation of human papillomavirus status to cervical lesions and consequences for cervical-cancer screening: a prospective study. Lancet 354:20–25.

6. Arbyn, M., S. D. Sanjose, M. Saraiya, M. Sideri, J. Palefsky, C. Lacey, et al. 2012. EUROGIN 2011 roadmap on prevention and treatment of HPV-related disease. Int. J. Cancer 131:1969–1982.

7. Depuydt, C. E., A. M. Criel, I. H. Benoy, M. Arbyn, A. J. Vereecken, and J. J. Bogers. 2012. Changes in type-specific human papillomavirus load predict progression to cervical cancer. J. Cell Mol. Med. 16:3096–3104.

8. Arbyn, M., G. Ronco, A. Anttila, C. J. Meijer, M. Poljak, G. Ogilvie, et al. 2012. Evidence regarding human papillomavirus testing in secondary prevention of cervical cancer. Vaccine 30(Suppl 5):F88–F99.

9. Rogoza, R. M., N. Ferko, J. Bentley, C. J. Meijer, J. Berkhof, K. L. Wang, et al. 2008. Optimization of primary and secondary cervical cancer prevention strategies in an era of cervical cancer vaccination: a multi-regional health economic analysis. Vaccine 26(Suppl 5):F46–F58.

10. Depuydt, C. E., I. H. Benoy, J. F. Beert, A. M. Criel, J. J. Bogers, and M. Arbyn. 2012. Clinical Validation of a type-specific real time quantitative human papillomavirus PCR to the performance of hybrid capture 2 for the purpose of cervical cancer screening. J. Clin. Microbiol. 50:4073–4077.

11. Gravitt, P. E. 2011. The known unknowns of HPV natural history. J. Clin. Invest. 121:4593–4599.

12. Gravitt, P. E. 2012. Evidence and impact of human papillomavirus latency. Open Virol. J. 6:198–203.

13. Moscicki, A. B., Y. Ma, C. Wibbelsman, T. M. Darragh, A. Powers, S. Farhat, et al. 2010. Rate of and risks for regression of cervical intraepithelial neoplasia 2 in adolescents and young women. Obstet. Gynecol. 116:1373–1380.

14. Wang, S. M., D. Colombara, J. F. Shi, F. H. Zhao, J. Li, F. Chen, et al. 2013. Six-year regression and progression of cervical lesions of different human papillomavirus viral loads in varied histological diagnoses. Int. J. Gynecol. Cancer 23:716–723.

15. Bedell, M. A., J. B. Hudson, T. R. Golub, M. E. Turyk, M. Hosken, G. D. Wilbanks, et al. 1991. Amplification of human papillomavirus genomes in vitro is dependent on epithelial differentiation. J. Virol. 65:2254–2260.

16. Pyeon, D., S. M. Pearce, S. M. Lank, P. Ahlquist, and P. F. Lambert. 2009. Establishment of human papillomavirus infection requires cell cycle progression. PLoS Pathog. 5:e1000318.

17. Bodily, J., and L. A. Laimins. 2011. Persistence of human papillomavirus infection: keys to malignant progression. Trends Microbiol. 19:33–39.

18. Benoy, I. H., D. Vanden Broeck, M. J. Ruymbeke, S. Sahebali, M. Arbyn, J. J. Bogers, et al. 2011. Prior knowledge of HPV status improves detection of CIN2+ by cytology screening. Am. J. Obstet. Gynecol. 205:569.e1-7.

19. Jordan, J., M. Arbyn, P. Martin-Hirsch, U. Schenck, J. J. Baldauf, S. D. Da, et al. 2008. European guidelines for quality assurance in cervical cancer screening: recommendations for clinical management of abnormal cervical cytology, part 1. Cytopathology19:342–354.

20. Jordan, J., P. Martin-Hirsch, M. Arbyn, U. Schenck, J. J. Baldauf, S. D. Da, et al. 2009. European guidelines for clinical management of abnormal cervical cytology, part 2. Cytopathology 20:5–16.

21. Micalessi, I. M., G. A. Boulet, J. J. Bogers, I. H. Benoy, and C. E. Depuydt. 2012. High-throughput detection, genotyping and quantification of the human papillomavirus using real-time PCR. Clin. Chem. Lab. Med. 50:655–661.

22. Depuydt, C. E., G. A. Boulet, C. A. Horvath, I. H. Benoy, A. J. Vereecken, and J. J. Bogers. 2007. Comparison of MY09/11 consensus PCR and type-specific PCRs in the detection of oncogenic HPV types. J. Cell Mol. Med. 11:881–891.

23. Schoonjans, F., A. Zalata, C. E. Depuydt, and F. H. Comhaire. 1995. MedCalc: a new computer program for medical statistics.Comput. Methods Prog. Biomed. 48:257–262.

24. Woo, Y. L., J. Sterling, I. Damay, N. Coleman, R. Crawford, S. H. van der Burg, et al. 2008. Characterising the local immune responses in cervical intraepithelial neoplasia: a cross-sectional and longitudinal analysis. BJOG 115:1616–1621.

Štítky
Onkológia

Článok vyšiel v časopise

Cancer Medicine

Číslo 8

2015 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#