#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Major Role of the RecFOR Pathway in DNA Double-Strand-Break Repair through ESDSA in


In Deinococcus radiodurans, the extreme resistance to DNA–shattering treatments such as ionizing radiation or desiccation is correlated with its ability to reconstruct a functional genome from hundreds of chromosomal fragments. The rapid reconstitution of an intact genome is thought to occur through an extended synthesis-dependent strand annealing process (ESDSA) followed by DNA recombination. Here, we investigated the role of key components of the RecF pathway in ESDSA in this organism naturally devoid of RecB and RecC proteins. We demonstrate that inactivation of RecJ exonuclease results in cell lethality, indicating that this protein plays a key role in genome maintenance. Cells devoid of RecF, RecO, or RecR proteins also display greatly impaired growth and an important lethal sectoring as bacteria devoid of RecA protein. Other aspects of the phenotype of recFOR knock-out mutants paralleled that of a ΔrecA mutant: ΔrecFOR mutants are extremely radiosensitive and show a slow assembly of radiation-induced chromosomal fragments, not accompanied by DNA synthesis, and reduced DNA degradation. Cells devoid of RecQ, the major helicase implicated in repair through the RecF pathway in E. coli, are resistant to γ-irradiation and have a wild-type DNA repair capacity as also shown for cells devoid of the RecD helicase; in contrast, ΔuvrD mutants show a markedly decreased radioresistance, an increased latent period in the kinetics of DNA double-strand-break repair, and a slow rate of fragment assembly correlated with a slow rate of DNA synthesis. Combining RecQ or RecD deficiency with UvrD deficiency did not significantly accentuate the phenotype of ΔuvrD mutants. In conclusion, RecFOR proteins are essential for DNA double-strand-break repair through ESDSA whereas RecJ protein is essential for cell viability and UvrD helicase might be involved in the processing of double stranded DNA ends and/or in the DNA synthesis step of ESDSA.


Vyšlo v časopise: A Major Role of the RecFOR Pathway in DNA Double-Strand-Break Repair through ESDSA in. PLoS Genet 6(1): e32767. doi:10.1371/journal.pgen.1000774
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000774

Souhrn

In Deinococcus radiodurans, the extreme resistance to DNA–shattering treatments such as ionizing radiation or desiccation is correlated with its ability to reconstruct a functional genome from hundreds of chromosomal fragments. The rapid reconstitution of an intact genome is thought to occur through an extended synthesis-dependent strand annealing process (ESDSA) followed by DNA recombination. Here, we investigated the role of key components of the RecF pathway in ESDSA in this organism naturally devoid of RecB and RecC proteins. We demonstrate that inactivation of RecJ exonuclease results in cell lethality, indicating that this protein plays a key role in genome maintenance. Cells devoid of RecF, RecO, or RecR proteins also display greatly impaired growth and an important lethal sectoring as bacteria devoid of RecA protein. Other aspects of the phenotype of recFOR knock-out mutants paralleled that of a ΔrecA mutant: ΔrecFOR mutants are extremely radiosensitive and show a slow assembly of radiation-induced chromosomal fragments, not accompanied by DNA synthesis, and reduced DNA degradation. Cells devoid of RecQ, the major helicase implicated in repair through the RecF pathway in E. coli, are resistant to γ-irradiation and have a wild-type DNA repair capacity as also shown for cells devoid of the RecD helicase; in contrast, ΔuvrD mutants show a markedly decreased radioresistance, an increased latent period in the kinetics of DNA double-strand-break repair, and a slow rate of fragment assembly correlated with a slow rate of DNA synthesis. Combining RecQ or RecD deficiency with UvrD deficiency did not significantly accentuate the phenotype of ΔuvrD mutants. In conclusion, RecFOR proteins are essential for DNA double-strand-break repair through ESDSA whereas RecJ protein is essential for cell viability and UvrD helicase might be involved in the processing of double stranded DNA ends and/or in the DNA synthesis step of ESDSA.


Zdroje

1. ZahradkaK

SladeD

BailoneA

SommerS

AverbeckD

2006 Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443 569 573

2. SladeD

LindnerAB

PaulG

RadmanM

2009 Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans. Cell 136 1044 1055

3. SmithGR

1989 Homologous recombination in prokaryotes: enzymes and controlling sites. Genome 31 520 527

4. KuzminovA

1999 Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 63 751 813

5. KowalczykowskiSC

2000 Initiation of genetic recombination and recombination-dependent replication. Trends Biochem Sci 25 156 165

6. HoriiZ

ClarkAJ

1973 Genetic analysis of the recF pathway to genetic recombination in Escherichia coli K12: isolation and characterization of mutants. J Mol Biol 80 327 344

7. ClarkAJ

SandlerSJ

WillisDK

ChuCC

BlanarMA

1984 Genes of the RecE and RecF pathways of conjugational recombination in Escherichia coli. Cold Spring Harb Symp Quant Biol 49 453 462

8. NakayamaH

NakayamaK

NakayamaR

IrinoN

NakayamaY

1984 Isolation and genetic characterization of a thymineless death-resistant mutant of Escherichia coli K12: identification of a new mutation (recQ1) that blocks the RecF recombination pathway. Mol Gen Genet 195 474 480

9. KolodnerR

FishelRA

HowardM

1985 Genetic recombination of bacterial plasmid DNA: effect of RecF pathway mutations on plasmid recombination in Escherichia coli. J Bacteriol 163 1060 1066

10. MahdiAA

LloydRG

1989 Identification of the recR locus of Escherichia coli K-12 and analysis of its role in recombination and DNA repair. Mol Gen Genet 216 503 510

11. LloydRG

EvansNP

BuckmanC

1987 Formation of recombinant lacZ+ DNA in conjugational crosses with a recB mutant of Escherichia coli K12 depends on recF, recJ, and recO. Mol Gen Genet 209 135 141

12. CromieGA

2009 Phylogenetic ubiquity and shuffling of the bacterial RecBCD and AddAB recombination complexes. J Bacteriol 191 5076 5084

13. RochaEP

CornetE

MichelB

2005 Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet 1 e15 doi:10.1371/journal.pgen.0010015

14. WangJ

JulinDA

2004 DNA helicase activity of the RecD protein from Deinococcus radiodurans. J Biol Chem 279 52024 52032

15. ZhouQ

ZhangX

XuH

XuB

HuaY

2007 A new role of Deinococcus radiodurans RecD in antioxidant pathway. FEMS Microbiol Lett 271 118 125

16. ServinskyMD

JulinDA

2007 Effect of a recD mutation on DNA damage resistance and transformation in Deinococcus radiodurans. J Bacteriol 189 5101 5107

17. MisraHS

KhairnarNP

KotaS

ShrivastavaS

JoshiVP

2006 An exonuclease I-sensitive DNA repair pathway in Deinococcus radiodurans: a major determinant of radiation resistance. Mol Microbiol 59 1308 1316

18. MennecierS

CosteG

ServantP

BailoneA

SommerS

2004 Mismatch repair ensures fidelity of replication and recombination in the radioresistant organism Deinococcus radiodurans. Mol Genet Genomics 272 460 469

19. HansenMT

1978 Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans. J Bacteriol 134 71 75

20. Harsojo

KitayamaS

MatsuyamaA

1981 Genome multiplicity and radiation resistance in Micrococcus radiodurans. J Biochem (Tokyo) 90 877 880

21. NguyenHH

Bouthier de la TourC

ToueilleM

VannierF

SommerS

2009 The essential histone-like protein HU plays a major role in Deinococcus radiodurans nucleoid compaction. Mol Microbiol 73 240 252

22. WhiteO

EisenJA

HeidelbergJF

HickeyEK

PetersonJD

1999 Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286 1571 1577

23. MendoncaVM

KlepinHD

MatsonSW

1995 DNA helicases in recombination and repair: construction of a delta uvrD delta helD delta recQ mutant deficient in recombination and repair. J Bacteriol 177 1326 1335

24. BattistaJR

1997 Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 51 203 224

25. KikuchiMNI

KitayamaS

WatanabeH

YamamotoK

1999 Genomic organization of the radioresistant bacterium Deinococcus radiodurans : physical map and evidence for multiple replicons. FEMS Microbiol Lett 174 151 157

26. Bonacossa de AlmeidaC

CosteG

SommerS

BailoneA

2002 Quantification of RecA protein in Deinococcus radiodurans reveals involvement of RecA, but not LexA, in its regulation. Mol Genet Genomics 268 28 41

27. SatohK

NarumiI

KikuchiM

KitayamaS

YanagisawaT

2002 Characterization of RecA424 and RecA670 proteins from Deinococcus radiodurans. J Biochem (Tokyo) 131 121 129

28. ShanQ

BorkJM

WebbBL

InmanRB

CoxMM

1997 RecA protein filaments: end-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins. J Mol Biol 265 519 540

29. WebbBL

CoxMM

InmanRB

1997 Recombinational DNA repair: the RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps. Cell 91 347 356

30. BorkJM

CoxMM

InmanRB

2001 The RecOR proteins modulate RecA protein function at 5′ ends of single-stranded DNA. EMBO J 20 7313 7322

31. MorimatsuK

KowalczykowskiSC

2003 RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol Cell 11 1337 1347

32. InoueJ

HondaM

IkawaS

ShibataT

MikawaT

2008 The process of displacing the single-stranded DNA-binding protein from single-stranded DNA by RecO and RecR proteins. Nucleic Acids Res 36 94 109

33. SakaiA

CoxMM

2009 RecFOR and RecOR as distinct RecA loading pathways. J Biol Chem 284 3264 3272

34. LeeBI

KimKH

ShimSM

HaKS

YangJK

2004 Crystallization and preliminary X-ray crystallographic analysis of the RecR protein from Deinococcus radiodurans, a member of the RecFOR DNA-repair pathway. Acta Crystallogr D Biol Crystallogr 60 379 381

35. LeirosI

TimminsJ

HallDR

McSweeneyS

2005 Crystal structure and DNA-binding analysis of RecO from Deinococcus radiodurans. EMBO J 24 906 918

36. KorolevaO

MakharashviliN

CourcelleCT

CourcelleJ

KorolevS

2007 Structural conservation of RecF and Rad50: implications for DNA recognition and RecF function. EMBO J 26 867 877

37. MakharashviliN

MiT

KorolevaO

KorolevS

2009 RecR-mediated modulation of RecF dimer specificity for single- and double-stranded DNA. J Biol Chem 284 1425 1434

38. LovettST

ClarkAJ

1984 Genetic analysis of the recJ gene of Escherichia coli K-12. J Bacteriol 157 190 196

39. GarzonA

BeuzonCR

MahanMJ

CasadesusJ

1996 recB recJ mutants of Salmonella typhimurium are deficient in transductional recombination, DNA repair and plasmid maintenance. Mol Gen Genet 250 570 580

40. KicksteinE

HarmsK

WackernagelW

2007 Deletions of recBCD or recD influence genetic transformation differently and are lethal together with a recJ deletion in Acinetobacter baylyi. Microbiology 153 2259 2270

41. CourcelleJ

DonaldsonJR

ChowKH

CourcelleCT

2003 DNA damage-induced replication fork regression and processing in Escherichia coli. Science 299 1064 1067

42. CourcelleCT

ChowKH

CaseyA

CourcelleJ

2006 Nascent DNA processing by RecJ favors lesion repair over translesion synthesis at arrested replication forks in Escherichia coli. Proc Natl Acad Sci U S A 103 9154 9159

43. CoxMM

GoodmanMF

KreuzerKN

SherrattDJ

SandlerSJ

2000 The importance of repairing stalled replication forks. Nature 404 37 41

44. PenningtonJM

RosenbergSM

2007 Spontaneous DNA breakage in single living Escherichia coli cells. Nat Genet 39 797 802

45. KilloranMP

KeckJL

2006 Three HRDC domains differentially modulate Deinococcus radiodurans RecQ DNA helicase biochemical activity. J Biol Chem 281 12849 12857

46. HuangL

HuaX

LuH

GaoG

TianB

2007 Three tandem HRDC domains have synergistic effect on the RecQ functions in Deinococcus radiodurans. DNA Repair (Amst) 6 167 176

47. ChenH

HuangL

HuaX

YingL

HuY

2009 Pleiotropic Effects of RecQ in Deinococcus radiodurans. Genomics

48. MatsonSW

RobertsonAB

2006 The UvrD helicase and its modulation by the mismatch repair protein MutL. Nucleic Acids Res 34 4089 4097

49. MendoncaVM

Kaiser-RogersK

MatsonSW

1993 Double helicase II (uvrD)-helicase IV (helD) deletion mutants are defective in the recombination pathways of Escherichia coli. J Bacteriol 175 4641 4651

50. CaoZ

JulinDA

2009 Characterization in vitro and in vivo of the DNA helicase encoded by Deinococcus radiodurans locus DR1572. DNA Repair (Amst) 8 612 619

51. KimJI

SharmaAK

AbbottSN

WoodEA

DwyerDW

2002 RecA Protein from the extremely radioresistant bacterium Deinococcus radiodurans: expression, purification, and characterization. J Bacteriol 184 1649 1660

52. MorelP

HejnaJA

EhrlichSD

CassutoE

1993 Antipairing and strand transferase activities of E. coli helicase II (UvrD). Nucleic Acids Res 21 3205 3209

53. VeauteX

DelmasS

SelvaM

JeussetJ

Le CamE

2005 UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J 24 180 189

54. LestiniR

MichelB

2007 UvrD controls the access of recombination proteins to blocked replication forks. EMBO J 26 3804 3814

55. OssannaN

MountDW

1989 Mutations in uvrD induce the SOS response in Escherichia coli. J Bacteriol 171 303 307

56. KlinkertMQ

KleinA

Abdel-MonemM

1980 Studies on the functions of DNA helicase I and DNA helicase II of Escherichia coli. J Biol Chem 255 9746 9752

57. KuhnB

Abdel-MonemM

1982 DNA synthesis at a fork in the presence of DNA helicases. Eur J Biochem 125 63 68

58. LahueRS

AuKG

ModrichP

1989 DNA mismatch correction in a defined system. Science 245 160 164

59. BruandC

EhrlichSD

2000 UvrD-dependent replication of rolling-circle plasmids in Escherichia coli. Mol Microbiol 35 204 210

60. HarrisDR

TanakaM

SavelievSV

JolivetE

EarlAM

2004 Preserving genome integrity: the DdrA protein of Deinococcus radiodurans R1. PLoS Biol 2 e304 doi:10.1371/journal.pbio.0020304

61. NoraisCA

Chitteni-PattuS

WoodEA

InmanRB

CoxMM

2009 DdrB protein, an alternative Deinococcus radiodurans SSB induced by ionizing radiation. J Biol Chem 284 21402 21411

62. TanakaM

EarlAM

HowellHA

ParkMJ

EisenJA

2004 Analysis of Deinococcus radiodurans's transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance. Genetics 168 21 33

63. JolivetE

LecointeF

CosteG

SatohK

NarumiI

2006 Limited concentration of RecA delays DNA double-strand break repair in Deinococcus radiodurans R1. Mol Microbiol 59 338 349

64. Levin-ZaidmanS

EnglanderJ

ShimoniE

SharmaAK

MintonKW

2003 Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance? Science 299 254 256

65. ZimmermanJM

BattistaJR

2005 A ring-like nucleoid is not necessary for radioresistance in the Deinococcaceae. BMC Microbiol 5 17

66. MeimaR

RothfussHM

GewinL

LidstromME

2001 Promoter cloning in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol 183 3169 3175

67. MennecierS

ServantP

CosteG

BailoneA

SommerS

2006 Mutagenesis via IS transposition in Deinococcus radiodurans. Mol Microbiol 59 317 325

68. BentchikouE

ServantP

CosteG

SommerS

2007 Additive effects of SbcCD and PolX deficiencies in the in vivo repair of DNA double-strand breaks in Deinococcus radiodurans. J Bacteriol 189 4784 4790

69. LecointeF

ShevelevIV

BailoneA

SommerS

HubscherU

2004 Involvement of an X family DNA polymerase in double-stranded break repair in the radioresistant organism Deinococcus radiodurans. Mol Microbiol 53 1721 1730

70. MoseleyBE

CoplandHF

1978 Four mutants of Micrococcus radiodurans defective in the ability to repair DNA damaged by mitomycin-C, two of which have wild-type resistance to ultraviolet radiation. Mol Gen Genet 160 331 337

71. EarlAM

RankinSK

KimKP

LamendolaON

BattistaJR

2002 Genetic evidence that the uvsE gene product of Deinococcus radiodurans R1 is a UV damage endonuclease. J Bacteriol 184 1003 1009

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#