#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Altered Gene Expression and DNA Damage in Peripheral Blood Cells from Friedreich's Ataxia Patients: Cellular Model of Pathology


The neurodegenerative disease Friedreich's ataxia (FRDA) is the most common autosomal-recessively inherited ataxia and is caused by a GAA triplet repeat expansion in the first intron of the frataxin gene. In this disease, transcription of frataxin, a mitochondrial protein involved in iron homeostasis, is impaired, resulting in a significant reduction in mRNA and protein levels. Global gene expression analysis was performed in peripheral blood samples from FRDA patients as compared to controls, which suggested altered expression patterns pertaining to genotoxic stress. We then confirmed the presence of genotoxic DNA damage by using a gene-specific quantitative PCR assay and discovered an increase in both mitochondrial and nuclear DNA damage in the blood of these patients (p<0.0001, respectively). Additionally, frataxin mRNA levels correlated with age of onset of disease and displayed unique sets of gene alterations involved in immune response, oxidative phosphorylation, and protein synthesis. Many of the key pathways observed by transcription profiling were downregulated, and we believe these data suggest that patients with prolonged frataxin deficiency undergo a systemic survival response to chronic genotoxic stress and consequent DNA damage detectable in blood. In conclusion, our results yield insight into the nature and progression of FRDA, as well as possible therapeutic approaches. Furthermore, the identification of potential biomarkers, including the DNA damage found in peripheral blood, may have predictive value in future clinical trials.


Vyšlo v časopise: Altered Gene Expression and DNA Damage in Peripheral Blood Cells from Friedreich's Ataxia Patients: Cellular Model of Pathology. PLoS Genet 6(1): e32767. doi:10.1371/journal.pgen.1000812
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000812

Souhrn

The neurodegenerative disease Friedreich's ataxia (FRDA) is the most common autosomal-recessively inherited ataxia and is caused by a GAA triplet repeat expansion in the first intron of the frataxin gene. In this disease, transcription of frataxin, a mitochondrial protein involved in iron homeostasis, is impaired, resulting in a significant reduction in mRNA and protein levels. Global gene expression analysis was performed in peripheral blood samples from FRDA patients as compared to controls, which suggested altered expression patterns pertaining to genotoxic stress. We then confirmed the presence of genotoxic DNA damage by using a gene-specific quantitative PCR assay and discovered an increase in both mitochondrial and nuclear DNA damage in the blood of these patients (p<0.0001, respectively). Additionally, frataxin mRNA levels correlated with age of onset of disease and displayed unique sets of gene alterations involved in immune response, oxidative phosphorylation, and protein synthesis. Many of the key pathways observed by transcription profiling were downregulated, and we believe these data suggest that patients with prolonged frataxin deficiency undergo a systemic survival response to chronic genotoxic stress and consequent DNA damage detectable in blood. In conclusion, our results yield insight into the nature and progression of FRDA, as well as possible therapeutic approaches. Furthermore, the identification of potential biomarkers, including the DNA damage found in peripheral blood, may have predictive value in future clinical trials.


Zdroje

1. CampuzanoV

MonterminiL

LutzY

CovaL

HindelangC

1997 Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet 6 1771 1780

2. CampuzanoV

MonterminiL

MoltoMD

PianeseL

CosseeM

1996 Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271 1423 1427

3. OhshimaK

MonterminiL

WellsRD

PandolfoM

1998 Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo. J Biol Chem 273 14588 14595

4. BidichandaniSI

AshizawaT

PatelPI

1998 The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet 62 111 121

5. MuhlenhoffU

RichhardtN

RistowM

KispalG

LillR

2002 The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins. Hum Mol Genet 11 2025 2036

6. StehlingO

ElsasserHP

BruckelB

MuhlenhoffU

LillR

2004 Iron-sulfur protein maturation in human cells: evidence for a function of frataxin. Hum Mol Genet 13 3007 3015

7. SchulzJB

DehmerT

ScholsL

MendeH

HardtC

2000 Oxidative stress in patients with Friedreich ataxia. Neurology 55 1719 1721

8. WongA

YangJ

CavadiniP

GelleraC

LonnerdalB

1999 The Friedreich's ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and inhibitors of apoptosis. Hum Mol Genet 8 425 430

9. Chantrel-GroussardK

GeromelV

PuccioH

KoenigM

MunnichA

2001 Disabled early recruitment of antioxidant defenses in Friedreich's ataxia. Hum Mol Genet 10 2061 2067

10. ShoichetSA

BaumerAT

StamenkovicD

SauerH

PfeifferAF

2002 Frataxin promotes antioxidant defense in a thiol-dependent manner resulting in diminished malignant transformation in vitro. Hum Mol Genet 11 815 821

11. GakhO

ParkS

LiuG

MacomberL

ImlayJA

2006 Mitochondrial iron detoxification is a primary function of frataxin that limits oxidative damage and preserves cell longevity. Hum Mol Genet 15 467 479

12. NapoliE

TaroniF

CortopassiGA

2006 Frataxin, iron-sulfur clusters, heme, ROS, and aging. Antioxid Redox Signal 8 506 516

13. PuccioH

SimonD

CosseeM

Criqui-FilipeP

TizianoF

2001 Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet 27 181 186

14. CalabreseV

LodiR

TononC

D'AgataV

SapienzaM

2005 Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia. J Neurol Sci 233 145 162

15. FouryF

CazzaliniO

1997 Deletion of the yeast homologue of the human gene associated with Friedreich's ataxia elicits iron accumulation in mitochondria. FEBS Lett 411 373 377

16. KarthikeyanG

SantosJH

GraziewiczMA

CopelandWC

IsayaG

2003 Reduction in frataxin causes progressive accumulation of mitochondrial damage. Hum Mol Genet 12 3331 3342

17. LamarcheJB

CoteM

LemieuxB

1980 The cardiomyopathy of Friedreich's ataxia morphological observations in 3 cases. Can J Neurol Sci 7 389 396

18. WaldvogelD

van GelderenP

HallettM

1999 Increased iron in the dentate nucleus of patients with Friedrich's ataxia. Ann Neurol 46 123 125

19. EmondM

LepageG

VanasseM

PandolfoM

2000 Increased levels of plasma malondialdehyde in Friedreich ataxia. Neurology 55 1752 1753

20. BradleyJL

HomayounS

HartPE

SchapiraAH

CooperJM

2004 Role of oxidative damage in Friedreich's ataxia. Neurochem Res 29 561 567

21. SeznecH

SimonD

BoutonC

ReutenauerL

HertzogA

2005 Friedreich ataxia: the oxidative stress paradox. Hum Mol Genet 14 463 474

22. Di ProsperoNA

BakerA

JeffriesN

FischbeckKH

2007 Neurological effects of high-dose idebenone in patients with Friedreich's ataxia: a randomised, placebo-controlled trial. Lancet Neurol 6 878 886

23. MyersLM

LynchDR

FarmerJM

FriedmanLS

LawsonJA

2008 Urinary isoprostanes in Friedreich ataxia: lack of correlation with disease features. Mov Disord 23 1920 1922

24. MichaelS

PetrocineSV

QianJ

LamarcheJB

KnutsonMD

2006 Iron and iron-responsive proteins in the cardiomyopathy of Friedreich's ataxia. Cerebellum 5 257 267

25. TanG

NapoliE

TaroniF

CortopassiG

2003 Decreased expression of genes involved in sulfur amino acid metabolism in frataxin-deficient cells. Hum Mol Genet 12 1699 1711

26. CoppolaG

ChoiSH

SantosMM

MirandaCJ

TentlerD

2006 Gene expression profiling in frataxin deficient mice: microarray evidence for significant expression changes without detectable neurodegeneration. Neurobiol Dis 22 302 311

27. SchoenfeldRA

NapoliE

WongA

ZhanS

ReutenauerL

2005 Frataxin deficiency alters heme pathway transcripts and decreases mitochondrial heme metabolites in mammalian cells. Hum Mol Genet 14 3787 3799

28. HarrillAH

WatkinsPB

SuS

RossPK

HarbourtDE

2009 Mouse population-guided resequencing reveals that variants in CD44 contribute to acetaminophen-induced liver injury in humans. Genome Res

29. TusherVG

TibshiraniR

ChuG

2001 Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98 5116 5121

30. EfronB

TibshiraniR

2006 On testing the significance of sets of genes. Tech report 1 32

31. SubramanianA

TamayoP

MoothaVK

MukherjeeS

EbertBL

2005 Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102 15545 15550

32. HuT

GibsonDP

CarrGJ

TorontaliSM

TiesmanJP

2004 Identification of a gene expression profile that discriminates indirect-acting genotoxins from direct-acting genotoxins. Mutat Res 549 5 27

33. SantosJH

MeyerJN

MandavilliBS

Van HoutenB

2006 Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol Biol 314 183 199

34. YakesFM

Van HoutenB

1997 Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A 94 514 519

35. SantosJH

HunakovaL

ChenY

BortnerC

Van HoutenB

2003 Cell sorting experiments link persistent mitochondrial DNA damage with loss of mitochondrial membrane potential and apoptotic cell death. J Biol Chem 278 1728 1734

36. MandavilliBS

BoldoghI

Van HoutenB

2005 3-nitropropionic acid-induced hydrogen peroxide, mitochondrial DNA damage, and cell death are attenuated by Bcl-2 overexpression in PC12 cells. Brain Res Mol Brain Res 133 215 223

37. MandavilliBS

AliSF

Van HoutenB

2000 DNA damage in brain mitochondria caused by aging and MPTP treatment. Brain Res 885 45 52

38. SalazarJJ

Van HoutenB

1997 Preferential mitochondrial DNA injury caused by glucose oxidase as a steady generator of hydrogen peroxide in human fibroblasts. Mutat Res 385 139 149

39. Van HoutenB

ChengS

ChenY

2000 Measuring gene-specific nucleotide excision repair in human cells using quantitative amplification of long targets from nanogram quantities of DNA. Mutat Res 460 81 94

40. FillaA

De MicheleG

CavalcantiF

PianeseL

MonticelliA

1996 The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am J Hum Genet 59 554 560

41. PianeseL

TuranoM

Lo CasaleMS

De BiaseI

GiacchettiM

2004 Real time PCR quantification of frataxin mRNA in the peripheral blood leucocytes of Friedreich ataxia patients and carriers. J Neurol Neurosurg Psychiatry 75 1061 1063

42. ChouJW

ZhouT

KaufmannWK

PaulesRS

BushelPR

2007 Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes. BMC Bioinformatics 8 427

43. TrouillasP

TakayanagiT

HallettM

CurrierRD

SubramonySH

1997 International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci 145 205 211

44. OnukiJ

ChenY

TeixeiraPC

SchumacherRI

MedeirosMH

2004 Mitochondrial and nuclear DNA damage induced by 5-aminolevulinic acid. Arch Biochem Biophys 432 178 187

45. BurnettR

MelanderC

PuckettJW

SonLS

WellsRD

2006 DNA sequence-specific polyamides alleviate transcription inhibition associated with long GAA.TTC repeats in Friedreich's ataxia. Proc Natl Acad Sci U S A 103 11497 11502

46. LodiR

CooperJM

BradleyJL

MannersD

StylesP

1999 Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc Natl Acad Sci U S A 96 11492 11495

47. VorgerdM

ScholsL

HardtC

RistowM

EpplenJT

2000 Mitochondrial impairment of human muscle in Friedreich ataxia in vivo. Neuromuscul Disord 10 430 435

48. ThierbachR

SchulzTJ

IskenF

VoigtA

MietznerB

2005 Targeted disruption of hepatic frataxin expression causes impaired mitochondrial function, decreased life span and tumor growth in mice. Hum Mol Genet 14 3857 3864

49. LewisPD

CorrJB

ArlettCF

HarcourtSA

1979 Increased sensitivity to gamma irradiation of skin fibroblasts in Friedreich's ataxia. Lancet 2 474 475

50. EvansHJ

Vijayalaxmi

PentlandB

NewtonMS

1983 Mutagen hypersensitivity in Friedreich's ataxia. Ann Hum Genet 47 193 204

51. FinkelT

HolbrookNJ

2000 Oxidants, oxidative stress and the biology of ageing. Nature 408 239 247

52. SchulzTJ

ThierbachR

VoigtA

DrewesG

MietznerB

2006 Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth: Otto Warburg revisited. J Biol Chem 281 977 981

53. De PasT

MartinelliG

De BraudF

PeccatoriF

CataniaC

1999 Friedreich's ataxia and intrathecal chemotherapy in a patient with lymphoblastic lymphoma. Ann Oncol 10 1393

54. KiddA

ColemanR

WhitefordM

BarronLH

SimpsonSA

2001 Breast cancer in two sisters with Friedreich's ataxia. Eur J Surg Oncol 27 512 514

55. AckroydR

ShorthouseAJ

StephensonTJ

1996 Gastric carcinoma in siblings with Friedreich's ataxia. Eur J Surg Oncol 22 301 303

56. BarrH

PageR

TaylorW

1986 Primary small bowel ganglioneuroblastoma and Friedreich's ataxia. J R Soc Med 79 612 613

57. LillR

MuhlenhoffU

2008 Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem 77 669 700

58. KlingeS

HirstJ

MamanJD

KrudeT

PellegriniL

2007 An iron-sulfur domain of the eukaryotic primase is essential for RNA primer synthesis. Nat Struct Mol Biol 14 875 877

59. LukianovaOA

DavidSS

2005 A role for iron-sulfur clusters in DNA repair. Curr Opin Chem Biol 9 145 151

60. RudolfJ

MakrantoniV

IngledewWJ

StarkMJ

WhiteMF

2006 The DNA repair helicases XPD and FancJ have essential iron-sulfur domains. Mol Cell 23 801 808

61. SturmB

BistrichU

SchranzhoferM

SarseroJP

RauenU

2005 Friedreich's ataxia, no changes in mitochondrial labile iron in human lymphoblasts and fibroblasts: a decrease in antioxidative capacity? J Biol Chem 280 6701 6708

62. PaupeV

DassaEP

GoncalvesS

AuchereF

LonnM

2009 Impaired nuclear Nrf2 translocation undermines the oxidative stress response in friedreich ataxia. PLoS ONE 4 e4253

63. NiedernhoferLJ

GarinisGA

RaamsA

LalaiAS

RobinsonAR

2006 A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444 1038 1043

64. PaschenW

ProudCG

MiesG

2007 Shut-down of translation, a global neuronal stress response: mechanisms and pathological relevance. Curr Pharm Des 13 1887 1902

65. MukhopadhyayD

RiezmanH

2007 Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315 201 205

66. HerrmannJ

LermanLO

LermanA

2007 Ubiquitin and ubiquitin-like proteins in protein regulation. Circ Res 100 1276 1291

67. ZeebergBR

FengW

WangG

WangMD

FojoAT

2003 GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol 4 R28

68. DennisGJr

ShermanBT

HosackDA

YangJ

GaoW

2003 DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4 P3

69. EisenMB

SpellmanPT

BrownPO

BotsteinD

1998 Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95 14863 14868

70. HeidCA

StevensJ

LivakKJ

WilliamsPM

1996 Real time quantitative PCR. Genome Res 6 986 994

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#