#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Systemic Imprint of Growth and Its Uses in Ecological (Meta)Genomics


Microbial minimal generation times range from a few minutes to several weeks. They are evolutionarily determined by variables such as environment stability, nutrient availability, and community diversity. Selection for fast growth adaptively imprints genomes, resulting in gene amplification, adapted chromosomal organization, and biased codon usage. We found that these growth-related traits in 214 species of bacteria and archaea are highly correlated, suggesting they all result from growth optimization. While modeling their association with maximal growth rates in view of synthetic biology applications, we observed that codon usage biases are better correlates of growth rates than any other trait, including rRNA copy number. Systematic deviations to our model reveal two distinct evolutionary processes. First, genome organization shows more evolutionary inertia than growth rates. This results in over-representation of growth-related traits in fast degrading genomes. Second, selection for these traits depends on optimal growth temperature: for similar generation times purifying selection is stronger in psychrophiles, intermediate in mesophiles, and lower in thermophiles. Using this information, we created a predictor of maximal growth rate adapted to small genome fragments. We applied it to three metagenomic environmental samples to show that a transiently rich environment, as the human gut, selects for fast-growers, that a toxic environment, as the acid mine biofilm, selects for low growth rates, whereas a diverse environment, like the soil, shows all ranges of growth rates. We also demonstrate that microbial colonizers of babies gut grow faster than stabilized human adults gut communities. In conclusion, we show that one can predict maximal growth rates from sequence data alone, and we propose that such information can be used to facilitate the manipulation of generation times. Our predictor allows inferring growth rates in the vast majority of uncultivable prokaryotes and paves the way to the understanding of community dynamics from metagenomic data.


Vyšlo v časopise: The Systemic Imprint of Growth and Its Uses in Ecological (Meta)Genomics. PLoS Genet 6(1): e32767. doi:10.1371/journal.pgen.1000808
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000808

Souhrn

Microbial minimal generation times range from a few minutes to several weeks. They are evolutionarily determined by variables such as environment stability, nutrient availability, and community diversity. Selection for fast growth adaptively imprints genomes, resulting in gene amplification, adapted chromosomal organization, and biased codon usage. We found that these growth-related traits in 214 species of bacteria and archaea are highly correlated, suggesting they all result from growth optimization. While modeling their association with maximal growth rates in view of synthetic biology applications, we observed that codon usage biases are better correlates of growth rates than any other trait, including rRNA copy number. Systematic deviations to our model reveal two distinct evolutionary processes. First, genome organization shows more evolutionary inertia than growth rates. This results in over-representation of growth-related traits in fast degrading genomes. Second, selection for these traits depends on optimal growth temperature: for similar generation times purifying selection is stronger in psychrophiles, intermediate in mesophiles, and lower in thermophiles. Using this information, we created a predictor of maximal growth rate adapted to small genome fragments. We applied it to three metagenomic environmental samples to show that a transiently rich environment, as the human gut, selects for fast-growers, that a toxic environment, as the acid mine biofilm, selects for low growth rates, whereas a diverse environment, like the soil, shows all ranges of growth rates. We also demonstrate that microbial colonizers of babies gut grow faster than stabilized human adults gut communities. In conclusion, we show that one can predict maximal growth rates from sequence data alone, and we propose that such information can be used to facilitate the manipulation of generation times. Our predictor allows inferring growth rates in the vast majority of uncultivable prokaryotes and paves the way to the understanding of community dynamics from metagenomic data.


Zdroje

1. KlappenbachJA

DunbarJM

SchmidtTM

2000 rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66 1328 1333

2. DethlefsenL

SchmidtTM

2007 Performance of the translational apparatus varies with the ecological strategies of bacteria. J Bacteriol 189 3237 3245

3. StevensonBS

SchmidtTM

2004 Life history implications of rRNA gene copy number in Escherichia coli. Appl Environ Microbiol 70 6670 6677

4. GottschalJC

1985 Some reflections on microbial competitiveness among heterotrophic bacteria. Antonie Van Leeuwenhoek 51 473 494

5. MonodJ

1949 The growth of bacterial cultures. Annu Rev Microbiol 3 371 394

6. NeidhardtFC

1999 Bacterial growth: constant obsession with dN/dt. J Bacteriol 181 7405 7408

7. PanikovNS

1995 Microbial Growth Kinetics London Chapman & Hall

8. FreilichS

KreimerA

BorensteinE

YosefN

SharanR

2009 Metabolic-network-driven analysis of bacterial ecological strategies. Genome Biol 10 R61

9. MerhejV

Royer-CarenziM

PontarottiP

RaoultD

2009 Massive comparative genomic analysis reveals convergent evolution of specialized bacteria. Biol Direct 4 13

10. ReadAF

1994 The evolution of virulence. Trends Microbiol 2 73 76

11. vanBaalenM

SabelisMW

1995 The dynamics of multiple infection and the evolution of virulence. American Naturalist 146 881 910

12. SouliM

GalaniI

GiamarellouH

2008 Emergence of extensively drug-resistant and pandrug-resistant Gram-negative bacilli in Europe. Euro Surveill 13

13. LewisK

2007 Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5 48 56

14. SchutF

PrinsR

GottschalJ

1997 Oligotrophy and pelagic marine bacteria: facts and fiction. Aquatic Microbial Ecology 12 177 202

15. KochAL

2001 Oligotrophs versus copiotrophs. Bioessays 23 657 661

16. KochAL

1971 The adaptive responses of Escherichia coli to a feast and famine existence. Adv Microb Physiol 6 147 217

17. ButtonDK

1991 Biochemical basis for whole-cell uptake kinetics - specific affinity, oligotrophic capacity, and the meaning of the Michaelis constant. Appl Environ Microbiol 57 2033 2038

18. BremerH

DennisPP

1996 Modulation of chemical composition and other parameters of the cell by growth rate. Escherichia coli and Salmonella: cellular and molecular biology Washington DC ASM Press 1553 1569

19. CondonC

LiverisD

SquiresC

SchwartzI

SquiresCL

1995 rRNA operon multiplicity in Escherichia coli and the physiological implications of rrn inactivation. J Bacteriol 177 4152 4156

20. StevensonBS

SchmidtTM

1998 Growth rate-dependent accumulation of RNA from plasmid-borne rRNA operons in Escherichia coli. J Bacteriol 180 1970 1972

21. KubitschekHE

NewmanCN

1978 Chromosome replication during the division cycle in slowly growing, steady-state cultures of three Escherichia coli B/r strains. J Bacteriol 136 179 190

22. SchmidMB

RothJR

1987 Gene location affects expression level in Salmonella typhimurium. J Bacteriol 169 2872 2875

23. SousaC

de LorenzoV

CebollaA

1997 Modulation of gene expression through chromosomal positioning in Escherichia coli. Microbiology 143 2071 2078

24. DryseliusR

IzutsuK

HondaT

IidaT

2008 Differential replication dynamics for large and small Vibrio chromosomes affect gene dosage, expression and location. BMC Genomics 9 559

25. CouturierE

RochaEPC

2006 Replication-associated gene dosage effects shape the genomes of fast-growing bacteria but only for transcription and translation genes. Mol Microbiol 59 1506 1518

26. DongH

NilssonL

KurlandCG

1996 Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J Mol Biol 260 649 663

27. IkemuraT

1985 Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2 13 34

28. GranthamR

GautierC

GouyM

JacobzoneM

MercierR

1981 Codon catalog usage is a genome strategy modulated for gene expressivity. Nucleic Acids Res 9 r43 74

29. KarlinS

MrazekJ

2000 Predicted highly expressed genes of diverse prokaryotic genomes. J Bacteriol 182 5238 5250

30. BulmerM

1991 The selection-mutation-drift theory of synonymous codon usage. Genetics 129 897 907

31. KarlinS

BarnettMJ

CampbellA

FisherRF

MrazekJ

2003 Predicting gene expression levels from codon usage biases in a-proteobacterial genomes. Proc Natl Acad Sci U S A 100 7313 7318

32. SharpPM

LiWH

1987 The Codon Adaptation Index - a Measure of Directional Synonymous Codon Usage Bias, and Its Potential Applications. Nucleic Acids Research 15 1281 1295

33. AiyarSE

GaalT

GourseRL

2002 rRNA promoter activity in the fast-growing bacterium Vibrio natriegens. J Bacteriol 184 1349 1358

34. ShresthaPM

NollM

LiesackW

2007 Phylogenetic identity, growth-response time and rRNA operon copy number of soil bacteria indicate different stages of community succession. Environmental Microbiology 9 2464 2474

35. RochaEP

2004 Codon usage bias from tRNA's point of view: redundancy, specialization, and efficient decoding for translation optimization. Genome Res 14 2279 2286

36. HiggsPG

RanW

2008 Coevolution of codon usage and tRNA genes leads to alternative stable states of biased codon usage. Mol Biol Evol 25 2279 2291

37. ArdellDH

KirsebomLA

2005 The Genomic Pattern of tDNA Operon Expression in E. coli. PLoS Comput Biol 1 e12 doi:10.1371/journal.pcbi.0010012

38. SubramanianS

2008 Nearly neutrality and the evolution of codon usage bias in eukaryotic genomes. Genetics 178 2429 2432

39. TadmorAD

TlustyT

2008 A coarse-grained biophysical model of E. coli and its application to perturbation of the rRNA operon copy number. PLoS Comput Biol 4 e1000038 doi:10.1371/journal.pcbi.1000038

40. TouchonM

RochaEP

2007 Causes of insertion sequences abundance in prokaryotic genomes. Mol Biol Evol 24 969 981

41. MiraA

OchmanH

MoranNA

2001 Deletional bias and the evolution of bacterial genomes. Trends Genet 17 589 596

42. HughesD

2000 Co-evolution of the tuf genes links gene conversion with the generation of chromosomal inversions. J Mol Biol 297 355 364

43. LeeZM

BussemaC3rd

SchmidtTM

2009 rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea. Nucleic Acids Res 37 D489 493

44. WeiderLJ

ElserJJ

CreaseTJ

MateosM

CotnerJB

2005 The functional significance of ribosomal (r)DNA variation: Impacts on the evolutionary ecology of organisms. Annu Rev Ecol Evol Syst 36 219 242

45. VasiF

TravisanoM

LenskiRE

1994 Long-term experimental evolution in Escherichia coli. II. Changes in life history traits during adaptation to a seasonal environment. Am Nat 144 432 456

46. SharpPM

BailesE

GrocockRJ

PedenJF

SockettRE

2005 Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res 33 1141 1153

47. BentleySD

ParkhillJ

2004 Comparative genomic structure of prokaryotes. Annu Rev Genet 38 771 791

48. MustoH

NayaH

ZavalaA

RomeroH

Alvarez-ValinF

2006 Genomic GC level, optimal growth temperature, and genome size in prokaryotes. Biochem Biophys Res Commun 347 1 3

49. GustafssonC

GovindarajanS

MinshullJ

2004 Codon bias and heterologous protein expression. Trends Biotechnol 22 346 353

50. FelsensteinJ

1985 Phylogenies and the comparative method. Am Nat 125 1 15

51. HillCW

GrayJA

1988 Effects of chromosomal inversion on cell fitness in Escherichia coli K- 12. Genetics 119 771 778

52. MuellerS

PapamichailD

ColemanJR

SkienaS

WimmerE

2006 Reduction of the rate of poliovirus protein synthesis through large-scale codon deoptimization causes attenuation of viral virulence by lowering specific infectivity. J Virol 80 9687 9696

53. CelloJ

PaulAV

WimmerE

2002 Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297 1016 1018

54. GibsonDG

BendersGA

Andrews-PfannkochC

DenisovaEA

Baden-TillsonH

2008 Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319 1215 1220

55. DraperNR

SmithH

1998 Applied regression analysis New York John Wiley & Sons 706

56. GeorletteD

BlaiseV

CollinsT

D'AmicoS

GratiaE

2004 Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28 25 42

57. MedigueC

KrinE

PascalG

BarbeV

BernselA

2005 Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15 1325 1335

58. ColeST

EiglmeierK

ParkhillJ

JamesKD

ThomsonNR

2001 Massive gene decay in the leprosy bacillus. Nature 409 1007 1011

59. TohH

WeissBL

PerkinSA

YamashitaA

OshimaK

2006 Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res 16 149 156

60. Gomez-ValeroL

RochaEP

LatorreA

SilvaFJ

2007 Reconstructing the ancestor of Mycobacterium leprae: the dynamics of gene loss and genome reduction. Genome Res 17 1178 1185

61. MoranNA

MiraA

2001 The process of genome shrinkage in the obligate symbiont Buchnera aphidicola. Genome Biol 2 1 12

62. RogallT

WoltersJ

FlohrT

BottgerEC

1990 Towards a phylogeny and definition of species at the molecular level within the genus Mycobacterium. Int J Syst Bacteriol 40 323 330

63. BejaO

SuzukiMT

KooninEV

AravindL

HaddA

2000 Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ Microbiol 2 516 529

64. TettelinH

RileyD

CattutoC

MediniD

2008 Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11 472 477

65. GillSR

PopM

DeboyRT

EckburgPB

TurnbaughPJ

2006 Metagenomic analysis of the human distal gut microbiome. Science 312 1355 1359

66. TringeSG

von MeringC

KobayashiA

SalamovAA

ChenK

2005 Comparative metagenomics of microbial communities. Science 308 554 557

67. TysonGW

ChapmanJ

HugenholtzP

AllenEE

RamRJ

2004 Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428 37 43

68. VelicerGJ

LenskiRE

1999 Evolutionary trade-offs under conditions of resource abundance and scarcity: Experiments with bacteria. Ecology 80 1168 1179

69. BakerBJ

BanfieldJF

2003 Microbial communities in acid mine drainage. FEMS Microbiology Ecology 44

70. TorsvikV

OvreasL

ThingstadTF

2002 Prokaryotic diversity–magnitude, dynamics, and controlling factors. Science 296 1064 1066

71. DopsonM

Baker-AustinC

HindA

BowmanJP

BondPL

2004 Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70 2079 2088

72. CoramNJ

RawlingsDE

2002 Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 degrees C. Appl Environ Microbiol 68 838 845

73. MackieRI

SghirA

GaskinsHR

1999 Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 69 1035S 1045S

74. LevequeC

2003 Dynamics of communities and ecosystems. Ecology From Ecosystem to Biosphere Enfield, NH Science Publishers Inc 216 221

75. KurokawaK

ItohT

KuwaharaT

OshimaK

TohH

2007 Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14 169 181

76. EckburgPB

BikEM

BernsteinCN

PurdomE

DethlefsenL

2005 Diversity of the human intestinal microbial flora. Science 308 1635 1638

77. LeyRE

BackhedF

TurnbaughP

LozuponeCA

KnightRD

2005 Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102 11070 11075

78. IbarraRU

EdwardsJS

PalssonBO

2002 Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420 186 189

79. MaJ

CampbellA

KarlinS

2002 Correlations between Shine-Dalgarno sequences and gene features such as predicted expression levels and operon structures. J Bacteriol 184 5733 5745

80. RochaEPC

DanchinA

ViariA

1999 Translation in Bacillus subtilis: roles and trends of initiation and termination, insights from a genome analysis. Nucleic Acids Res 27 3567 3576

81. AllenTE

HerrgardMJ

LiuM

QiuY

GlasnerJD

2003 Genome-scale analysis of the uses of the Escherichia coli genome: model-driven analysis of heterogeneous data sets. J Bacteriol 185 6392 6399

82. LithwickG

MargalitH

2003 Hierarchy of sequence-dependent features associated with prokaryotic translation. Genome Res 13 2665 2673

83. LynchM

ConeryJS

2003 The origins of genome complexity. Science 302 1401 1404

84. PartenskyF

HessWR

VaulotD

1999 Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63 106 127

85. LauroFM

McDougaldD

ThomasT

WilliamsTJ

EganS

2009 The genomic basis of trophic strategy in marine bacteria. Proc Natl Acad Sci U S A 106 15527 15533

86. PangH

WinklerHH

1994 The concentrations of stable RNA and ribosomes in Rickettsia prowazekii. Mol Microbiol 12 115 120

87. FegatellaF

LimJ

KjellebergS

CavicchioliR

1998 Implications of rRNA operon copy number and ribosome content in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256. Appl Environ Microbiol 64 4433 4438

88. LoweT

EddyS

1997 tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25 955 964

89. GaoF

ZhangCT

2007 DoriC: a database of oriC regions in bacterial genomes. Bioinformatics 23 1866 1867

90. KelmanLM

KelmanZ

2004 Multiple origins of replication in archaea. Trends Microbiol 12 399 401

91. NovembreJA

2002 Accounting for Background Nucleotide Composition When Measuring Codon Usage Bias. Mol Biol Evol 19 1390 1394

92. EdgarRC

2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32 1792 1797

93. GaltierN

GouyM

GautierC

1996 SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12 543 548

94. GuindonS

GascuelO

2003 A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52 696 704

95. ParadisE

ClaudeJ

2002 Analysis of comparative data using generalized estimating equations. J Theor Biol 218 175 185

96. AbrahamAL

RochaEP

PothierJ

2008 Swelfe: a detector of internal repeats in sequences and structures. Bioinformatics 24 1536 1537

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#