Fragilities Caused by Dosage Imbalance in Regulation of the Budding Yeast Cell Cycle
Cells can maintain their functions despite fluctuations in intracellular parameters, such as protein activities and gene expression levels. This commonly observed biological property of cells is called robustness. On the other hand, these parameters have different limitations, each reflecting the property of the subsystem containing the parameter. The budding yeast cell cycle is quite fragile upon overexpression of CDC14, but is robust upon overexpression of ESP1. The gene products of both CDC14 and ESP1 are regulated by 1∶1 binding with their inhibitors (Net1 and Pds1), and a mathematical model predicts the extreme fragility of the cell cycle upon overexpression of CDC14 and ESP1 caused by dosage imbalance between these genes. However, it has not been experimentally shown that dosage imbalance causes fragility of the cell cycle. In this study, we measured the quantitative genetic interactions of these genes by performing combinatorial “genetic tug-of-war” experiments. We first showed experimental evidence that dosage imbalance between CDC14 and NET1 causes fragility. We also showed that fragility arising from dosage imbalance between ESP1 and PDS1 is masked by CDH1 and CLB2. The masking function of CLB2 was stabilization of Pds1 by its phosphorylation. We finally modified Chen's model according to our findings. We thus propose that dosage imbalance causes fragility in biological systems.
Vyšlo v časopise:
Fragilities Caused by Dosage Imbalance in Regulation of the Budding Yeast Cell Cycle. PLoS Genet 6(4): e32767. doi:10.1371/journal.pgen.1000919
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1000919
Souhrn
Cells can maintain their functions despite fluctuations in intracellular parameters, such as protein activities and gene expression levels. This commonly observed biological property of cells is called robustness. On the other hand, these parameters have different limitations, each reflecting the property of the subsystem containing the parameter. The budding yeast cell cycle is quite fragile upon overexpression of CDC14, but is robust upon overexpression of ESP1. The gene products of both CDC14 and ESP1 are regulated by 1∶1 binding with their inhibitors (Net1 and Pds1), and a mathematical model predicts the extreme fragility of the cell cycle upon overexpression of CDC14 and ESP1 caused by dosage imbalance between these genes. However, it has not been experimentally shown that dosage imbalance causes fragility of the cell cycle. In this study, we measured the quantitative genetic interactions of these genes by performing combinatorial “genetic tug-of-war” experiments. We first showed experimental evidence that dosage imbalance between CDC14 and NET1 causes fragility. We also showed that fragility arising from dosage imbalance between ESP1 and PDS1 is masked by CDH1 and CLB2. The masking function of CLB2 was stabilization of Pds1 by its phosphorylation. We finally modified Chen's model according to our findings. We thus propose that dosage imbalance causes fragility in biological systems.
Zdroje
1. AlonU
SuretteMG
BarkaiN
LeiblerS
1999 Robustness in bacterial chemotaxis. Nature 397 168 171
2. DekelE
AlonU
2005 Optimality and evolutionary tuning of the expression level of a protein. Nature 436 588 592
3. WagnerA
2005 Energy constraints on the evolution of gene expression. Mol Biol Evol 22 1365 1374
4. ZaslaverA
MayoAE
RosenbergR
BashkinP
SberroH
2004 Just-in-time transcription program in metabolic pathways. Nat Genet 36 486 491
5. BarkaiN
LeiblerS
1997 Robustness in simple biochemical networks. Nature 387 913 917
6. LittleJW
ShepleyDP
WertDW
1999 Robustness of a gene regulatory circuit. Embo J 18 4299 4307
7. von DassowG
MeirE
MunroEM
OdellGM
2000 The segment polarity network is a robust developmental module. Nature 406 188 192
8. MorganDO
2007 The Cell Cycle: Principles of Control Sunderland, MA New Science Press
9. ChenKC
CalzoneL
Csikasz-NagyA
CrossFR
NovakB
2004 Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 15 3841 3862
10. CrossFR
SchroederL
KruseM
ChenKC
2005 Quantitative characterization of a mitotic cyclin threshold regulating exit from mitosis. Mol Biol Cell 16 2129 2138
11. IronsDJ
2009 Logical analysis of the budding yeast cell cycle. J Theor Biol 257 543 559
12. LiF
LongT
LuY
OuyangQ
TangC
2004 The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci U S A 101 4781 4786
13. MoriyaH
Shimizu-YoshidaY
KitanoH
2006 In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae. PLoS Genet 2 e111 doi:10.1371/journal.pgen.0020111
14. YiTM
HuangY
SimonMI
DoyleJ
2000 Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci U S A 97 4649 4653
15. AgarwalR
Cohen-FixO
2002 Phosphorylation of the mitotic regulator Pds1/securin by Cdc28 is required for efficient nuclear localization of Esp1/separase. Genes Dev 16 1371 1382
16. CioskR
ZachariaeW
MichaelisC
ShevchenkoA
MannM
1998 An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93 1067 1076
17. ShouW
SeolJH
ShevchenkoA
BaskervilleC
MoazedD
1999 Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97 233 244
18. VisintinR
HwangES
AmonA
1999 Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature 398 818 823
19. FutcherAB
CoxBS
1984 Copy number and the stability of 2-micron circle-based artificial plasmids of Saccharomyces cerevisiae. J Bacteriol 157 283 290
20. QueraltE
LehaneC
NovakB
UhlmannF
2006 Downregulation of PP2A(Cdc55) phosphatase by separase initiates mitotic exit in budding yeast. Cell 125 719 732
21. HoltLJ
KrutchinskyAN
MorganDO
2008 Positive feedback sharpens the anaphase switch. Nature 454 353 357
22. StemmannO
ZouH
GerberSA
GygiSP
KirschnerMW
2001 Dual inhibition of sister chromatid separation at metaphase. Cell 107 715 726
23. SullivanM
LehaneC
UhlmannF
2001 Orchestrating anaphase and mitotic exit: separase cleavage and localization of Slk19. Nat Cell Biol 3 771 777
24. UhlmannF
LottspeichF
NasmythK
1999 Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400 37 42
25. StegmeierF
AmonA
2004 Closing mitosis: the functions of the Cdc14 phosphatase and its regulation. Annu Rev Genet 38 203 232
26. SullivanM
UhlmannF
2003 A non-proteolytic function of separase links the onset of anaphase to mitotic exit. Nat Cell Biol 5 249 254
27. KitanoH
2004 Biological robustness. Nat Rev Genet 5 826 837
28. KitanoH
2007 A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov 6 202 210
29. VisintinR
PrinzS
AmonA
1997 CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278 460 463
30. CharlesJF
JaspersenSL
Tinker-KulbergRL
HwangL
SzidonA
1998 The Polo-related kinase Cdc5 activates and is destroyed by the mitotic cyclin destruction machinery in S. cerevisiae. Curr Biol 8 497 507
31. HildebrandtER
HoytMA
2001 Cell cycle-dependent degradation of the Saccharomyces cerevisiae spindle motor Cin8p requires APC(Cdh1) and a bipartite destruction sequence. Mol Biol Cell 12 3402 3416
32. MichaelS
TraveG
RamuC
ChicaC
GibsonTJ
2008 Discovery of candidate KEN-box motifs using cell cycle keyword enrichment combined with native disorder prediction and motif conservation. Bioinformatics 24 453 457
33. ShirayamaM
ZachariaeW
CioskR
NasmythK
1998 The Polo-like kinase Cdc5p and the WD-repeat protein Cdc20p/fizzy are regulators and substrates of the anaphase promoting complex in Saccharomyces cerevisiae. EMBO J 17 1336 1349
34. VisintinC
TomsonBN
RahalR
PaulsonJ
CohenM
2008 APC/C-Cdh1-mediated degradation of the Polo kinase Cdc5 promotes the return of Cdc14 into the nucleolus. Genes Dev 22 79 90
35. ShirayamaM
TothA
GalovaM
NasmythK
1999 APC(Cdc20) promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and cyclin Clb5. Nature 402 203 207
36. HornigNC
KnowlesPP
McDonaldNQ
UhlmannF
2002 The dual mechanism of separase regulation by securin. Curr Biol 12 973 982
37. UhlmannF
2003 Chromosome cohesion and separation: from men and molecules. Curr Biol 13 R104 114
38. RiveraT
LosadaA
2009 Shugoshin regulates cohesion by driving relocalization of PP2A in Xenopus extracts. Chromosoma 118 223 233
39. RossKE
Cohen-FixO
2003 The role of Cdh1p in maintaining genomic stability in budding yeast. Genetics 165 489 503
40. SarinS
RossKE
BoucherL
GreenY
TyersM
2004 Uncovering novel cell cycle players through the inactivation of securin in budding yeast. Genetics 168 1763 1771
41. AndersKR
KudrnaJR
KellerKE
KinghornB
MillerEM
2009 A strategy for constructing aneuploid yeast strains by transient nondisjunction of a target chromosome. BMC Genet 10 36
42. DeutschbauerAM
JaramilloDF
ProctorM
KummJ
HillenmeyerME
2005 Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169 1915 1925
43. Meeks-WagnerD
HartwellLH
1986 Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. Cell 44 43 52
44. GhaemmaghamiS
HuhWK
BowerK
HowsonRW
BelleA
2003 Global analysis of protein expression in yeast. Nature 425 737 741
45. BuchlerNE
CrossFR
2009 Protein sequestration generates a flexible ultrasensitive response in a genetic network. Mol Syst Biol 5 272
46. FerrellJEJr
1996 Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem Sci 21 460 466
47. Trinkle-MulcahyL
LamondAI
2006 Mitotic phosphatases: no longer silent partners. Curr Opin Cell Biol 18 623 631
48. BoslWJ
LiR
2005 Mitotic-exit control as an evolved complex system. Cell 121 325 333
49. IngoliaNT
MurrayAW
2004 The ups and downs of modeling the cell cycle. Curr Biol 14 R771 777
50. FunahashiA
JourakuA
MatsuokaY
KitanoH
2007 Integration of CellDesigner and SABIO-RK. In Silico Biol 7 S81 90
51. KitanoH
FunahashiA
MatsuokaY
OdaK
2005 Using process diagrams for the graphical representation of biological networks. Nat Biotechnol 23 961 966
52. ChristiansonTW
SikorskiRS
DanteM
SheroJH
HieterP
1992 Multifunctional yeast high-copy-number shuttle vectors. Gene 110 119 122
53. JaspersenSL
CharlesJF
MorganDO
1999 Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr Biol 9 227 236
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 4
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Whole-Genome SNP Association in the Horse: Identification of a Deletion in Myosin Va Responsible for Lavender Foal Syndrome
- Admixture Mapping Scans Identify a Locus Affecting Retinal Vascular Caliber in Hypertensive African Americans: the Atherosclerosis Risk in Communities (ARIC) Study
- Genetic Tests for Ecological and Allopatric Speciation in Anoles on an Island Archipelago
- Human Telomeres Are Hypersensitive to UV-Induced DNA Damage and Refractory to Repair