Incipient Balancing Selection through Adaptive Loss of Aquaporins in Natural Populations
A major goal in evolutionary biology is to understand how adaptive evolution has influenced natural variation, but identifying loci subject to positive selection has been a challenge. Here we present the adaptive loss of a pair of paralogous genes in specific Saccharomyces cerevisiae subpopulations. We mapped natural variation in freeze-thaw tolerance to two water transporters, AQY1 and AQY2, previously implicated in freeze-thaw survival. However, whereas freeze-thaw–tolerant strains harbor functional aquaporin genes, the set of sensitive strains lost aquaporin function at least 6 independent times. Several genomic signatures at AQY1 and/or AQY2 reveal low variation surrounding these loci within strains of the same haplotype, but high variation between strain groups. This is consistent with recent adaptive loss of aquaporins in subgroups of strains, leading to incipient balancing selection. We show that, although aquaporins are critical for surviving freeze-thaw stress, loss of both genes provides a major fitness advantage on high-sugar substrates common to many strains' natural niche. Strikingly, strains with non-functional alleles have also lost the ancestral requirement for aquaporins during spore formation. Thus, the antagonistic effect of aquaporin function—providing an advantage in freeze-thaw tolerance but a fitness defect for growth in high-sugar environments—contributes to the maintenance of both functional and nonfunctional alleles in S. cerevisiae. This work also shows that gene loss through multiple missense and nonsense mutations, hallmarks of pseudogenization presumed to emerge after loss of constraint, can arise through positive selection.
Vyšlo v časopise:
Incipient Balancing Selection through Adaptive Loss of Aquaporins in Natural Populations. PLoS Genet 6(4): e32767. doi:10.1371/journal.pgen.1000893
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1000893
Souhrn
A major goal in evolutionary biology is to understand how adaptive evolution has influenced natural variation, but identifying loci subject to positive selection has been a challenge. Here we present the adaptive loss of a pair of paralogous genes in specific Saccharomyces cerevisiae subpopulations. We mapped natural variation in freeze-thaw tolerance to two water transporters, AQY1 and AQY2, previously implicated in freeze-thaw survival. However, whereas freeze-thaw–tolerant strains harbor functional aquaporin genes, the set of sensitive strains lost aquaporin function at least 6 independent times. Several genomic signatures at AQY1 and/or AQY2 reveal low variation surrounding these loci within strains of the same haplotype, but high variation between strain groups. This is consistent with recent adaptive loss of aquaporins in subgroups of strains, leading to incipient balancing selection. We show that, although aquaporins are critical for surviving freeze-thaw stress, loss of both genes provides a major fitness advantage on high-sugar substrates common to many strains' natural niche. Strikingly, strains with non-functional alleles have also lost the ancestral requirement for aquaporins during spore formation. Thus, the antagonistic effect of aquaporin function—providing an advantage in freeze-thaw tolerance but a fitness defect for growth in high-sugar environments—contributes to the maintenance of both functional and nonfunctional alleles in S. cerevisiae. This work also shows that gene loss through multiple missense and nonsense mutations, hallmarks of pseudogenization presumed to emerge after loss of constraint, can arise through positive selection.
Zdroje
1. Mitchell-OldsT
WillisJH
GoldsteinDB
2007 Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat Rev Genet 8 845 856
2. AkeyJM
ZhangG
ZhangK
JinL
ShriverMD
2002 Interrogating a high-density SNP map for signatures of natural selection. Genome Res 12 1805 1814
3. ClarkAG
GlanowskiS
NielsenR
ThomasPD
KejariwalA
2003 Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science 302 1960 1963
4. NielsenR
BustamanteC
ClarkAG
GlanowskiS
SacktonTB
2005 A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol 3 e170 doi:10.1371/journal.pbio.0030170
5. SabetiPC
ReichDE
HigginsJM
LevineHZ
RichterDJ
2002 Detecting recent positive selection in the human genome from haplotype structure. Nature 419 832 837
6. VoightBF
KudaravalliS
WenX
PritchardJK
2006 A map of recent positive selection in the human genome. PLoS Biol 4 e72 doi:10.1371/journal.pbio.0050147
7. YamasakiM
TenaillonMI
BiIV
SchroederSG
Sanchez-VilledaH
2005 A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. Plant Cell 17 2859 2872
8. MackayTF
StoneEA
AyrolesJF
2009 The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10 565 577
9. KvitekDJ
WillJL
GaschAP
2008 Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates. PLoS Genet 4 e1000223 doi:10.1371/journal.pgen.1000223
10. TangheA
Van DijckP
DumortierF
TeunissenA
HohmannS
2002 Aquaporin expression correlates with freeze tolerance in baker's yeast, and overexpression improves freeze tolerance in industrial strains. Appl Environ Microbiol 68 5981 5989
11. TangheA
Van DijckP
ColavizzaD
TheveleinJM
2004 Aquaporin-mediated improvement of freeze tolerance of Saccharomyces cerevisiae is restricted to rapid freezing conditions. Appl Environ Microbiol 70 3377 3382
12. WolfeKH
ShieldsDC
1997 Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387 708 713
13. BonhiversM
CarbreyJM
GouldSJ
AgreP
1998 Aquaporins in Saccharomyces. Genetic and functional distinctions between laboratory and wild-type strains. J Biol Chem 273 27565 27572
14. CarbreyJM
BonhiversM
BoekeJD
AgreP
2001 Aquaporins in Saccharomyces: Characterization of a second functional water channel protein. Proc Natl Acad Sci U S A 98 1000 1005
15. LaizeV
GobinR
RousseletG
BadierC
HohmannS
1999 Molecular and functional study of AQY1 from Saccharomyces cerevisiae: role of the C-terminal domain. Biochem Biophys Res Commun 257 139 144
16. LaizeV
TacnetF
RipocheP
HohmannS
2000 Polymorphism of Saccharomyces cerevisiae aquaporins. Yeast 16 897 903
17. SniegowskiPD
DombrowskiPG
FingermanE
2002 Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics. FEMS Yeast Res 1 299 306
18. KimHS
FayJC
2007 Genetic variation in the cysteine biosynthesis pathway causes sensitivity to pharmacological compounds. Proc Natl Acad Sci U S A 104 19387 19391
19. TangheA
Van DijckP
TheveleinJM
2006 Why do microorganisms have aquaporins? Trends Microbiol 14 78 85
20. FayJC
BenavidesJA
2005 Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet 1 e5 doi:10.1371/journal.pgen.0010005
21. LitiG
CarterDM
MosesAM
WarringerJ
PartsL
2009 Population genomics of domestic and wild yeasts. Nature 458 337 341
22. McDonaldJH
KreitmanM
1991 Adaptive protein evolution at the Adh locus in Drosophila. Nature 351 652 654
23. WrightSI
CharlesworthB
2004 The HKA test revisited: a maximum-likelihood-ratio test of the standard neutral model. Genetics 168 1071 1076
24. KreitmanM
2000 Methods to detect selection in populations with applications to the human. Annu Rev Genomics Hum Genet 1 539 559
25. CharlesworthD
2006 Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet 2 e64 doi:10.1371/journal.pgen.0020064
26. LegrasJL
MerdinogluD
CornuetJM
KarstF
2007 Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol Ecol 16 2091 2102
27. ReplanskyT
KoufopanouV
GreigD
BellG
2008 Saccharomyces sensu stricto as a model system for evolution and ecology. Trends Ecol Evol 23 494 501
28. RuderferDM
PrattSC
SeidelHS
KruglyakL
2006 Population genomic analysis of outcrossing and recombination in yeast. Nat Genet 38 1077 1081
29. SchachererJ
ShapiroJA
RuderferDM
KruglyakL
2009 Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature 458 342 345
30. TeshimaK
CoopG
PrzeworskiM
2006 How reliable are empirical genomic scans for selective sweeps? Genome Res 6 702 712
31. CatharinoRR
CunhaIB
FogacaAO
FaccoEM
GodoyHT
2006 Characterization of must and wine of six varieties of grapes by direct infusion electrospray ionization mass spectrometry. J Mass Spectrom 41 185 190
32. Sidoux-WalterF
PetterssonN
HohmannS
2004 The Saccharomyces cerevisiae aquaporin Aqy1 is involved in sporulation. Proc Natl Acad Sci U S A 101 17422 17427
33. GerkeJP
ChenCT
CohenBA
2006 Natural isolates of Saccharomyces cerevisiae display complex genetic variation in sporulation efficiency. Genetics 174 985 997
34. KarpelJE
BissonLF
2006 Aquaporins in Saccharomyces cerevisiae wine yeast. FEMS Microbiol Lett 257 117 123
35. DonigerSW
KimHS
SwainD
CorcueraD
WilliamsM
2008 A catalog of neutral and deleterious polymorphism in yeast. PLoS Genet 4 e1000183 doi:10.1371/journal.pgen.1000183
36. NaumovGI
JamesSA
NaumovaES
LouisEJ
RobertsIN
2000 Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae. Int J Syst Evol Microbiol 50 Pt 5 1931 1942
37. FayJC
McCulloughHL
SniegowskiPD
EisenMB
2004 Population genetic variation in gene expression is associated with phenotypic variation in Saccharomyces cerevisiae. Genome Biol 5 R26
38. SampaioJP
GoncalvesP
2008 Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. paradoxus. Appl Environ Microbiol 74 2144 2152
39. XuZ
LeiningerT
LeeAW
TainterF
2001 Chemical properties associated with bacterial wetwood in red oaks. Wood Fiber Sci 33 76 83
40. AaE
TownsendJP
AdamsRI
NielsenKM
TaylorJW
2006 Population structure and gene evolution in Saccharomyces cerevisiae. FEMS Yeast Res 6 702 715
41. SchluterD
2009 Evidence for ecological speciation and its alternative. Science 323 737 741
42. DiezmannS
DietrichFS
2009 Saccharomyces cerevisiae: population divergence and resistance to oxidative stress in clinical, domesticated and wild isolates. PLoS ONE 4 e5317 doi:10.1371/journal.pone.0005317
43. KainthP
SassiHE
Pena-CastilloL
ChuaG
HughesTR
2009 Comprehensive genetic analysis of transcription factor pathways using a dual reporter gene system in budding yeast. Methods 48 258 264
44. BromanKW
WuH
SenS
ChurchillGA
2003 R/qtl: QTL mapping in experimental crosses. Bioinformatics 19 889 890
45. LibradoP
RozasJ
2009 DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25 1451 1452
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2010 Číslo 4
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Whole-Genome SNP Association in the Horse: Identification of a Deletion in Myosin Va Responsible for Lavender Foal Syndrome
- Admixture Mapping Scans Identify a Locus Affecting Retinal Vascular Caliber in Hypertensive African Americans: the Atherosclerosis Risk in Communities (ARIC) Study
- Genetic Tests for Ecological and Allopatric Speciation in Anoles on an Island Archipelago
- Human Telomeres Are Hypersensitive to UV-Induced DNA Damage and Refractory to Repair