#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genetic Analysis of Fin Development in Zebrafish Identifies Furin and Hemicentin1 as Potential Novel Fraser Syndrome Disease Genes


Using forward genetics, we have identified the genes mutated in two classes of zebrafish fin mutants. The mutants of the first class are characterized by defects in embryonic fin morphogenesis, which are due to mutations in a Laminin subunit or an Integrin alpha receptor, respectively. The mutants of the second class display characteristic blistering underneath the basement membrane of the fin epidermis. Three of them are due to mutations in zebrafish orthologues of FRAS1, FREM1, or FREM2, large basement membrane protein encoding genes that are mutated in mouse bleb mutants and in human patients suffering from Fraser Syndrome, a rare congenital condition characterized by syndactyly and cryptophthalmos. Fin blistering in a fourth group of zebrafish mutants is caused by mutations in Hemicentin1 (Hmcn1), another large extracellular matrix protein the function of which in vertebrates was hitherto unknown. Our mutant and dose-dependent interaction data suggest a potential involvement of Hmcn1 in Fraser complex-dependent basement membrane anchorage. Furthermore, we present biochemical and genetic data suggesting a role for the proprotein convertase FurinA in zebrafish fin development and cell surface shedding of Fras1 and Frem2, thereby allowing proper localization of the proteins within the basement membrane of forming fins. Finally, we identify the extracellular matrix protein Fibrillin2 as an indispensable interaction partner of Hmcn1. Thus we have defined a series of zebrafish mutants modelling Fraser Syndrome and have identified several implicated novel genes that might help to further elucidate the mechanisms of basement membrane anchorage and of the disease's aetiology. In addition, the novel genes might prove helpful to unravel the molecular nature of thus far unresolved cases of the human disease.


Vyšlo v časopise: Genetic Analysis of Fin Development in Zebrafish Identifies Furin and Hemicentin1 as Potential Novel Fraser Syndrome Disease Genes. PLoS Genet 6(4): e32767. doi:10.1371/journal.pgen.1000907
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000907

Souhrn

Using forward genetics, we have identified the genes mutated in two classes of zebrafish fin mutants. The mutants of the first class are characterized by defects in embryonic fin morphogenesis, which are due to mutations in a Laminin subunit or an Integrin alpha receptor, respectively. The mutants of the second class display characteristic blistering underneath the basement membrane of the fin epidermis. Three of them are due to mutations in zebrafish orthologues of FRAS1, FREM1, or FREM2, large basement membrane protein encoding genes that are mutated in mouse bleb mutants and in human patients suffering from Fraser Syndrome, a rare congenital condition characterized by syndactyly and cryptophthalmos. Fin blistering in a fourth group of zebrafish mutants is caused by mutations in Hemicentin1 (Hmcn1), another large extracellular matrix protein the function of which in vertebrates was hitherto unknown. Our mutant and dose-dependent interaction data suggest a potential involvement of Hmcn1 in Fraser complex-dependent basement membrane anchorage. Furthermore, we present biochemical and genetic data suggesting a role for the proprotein convertase FurinA in zebrafish fin development and cell surface shedding of Fras1 and Frem2, thereby allowing proper localization of the proteins within the basement membrane of forming fins. Finally, we identify the extracellular matrix protein Fibrillin2 as an indispensable interaction partner of Hmcn1. Thus we have defined a series of zebrafish mutants modelling Fraser Syndrome and have identified several implicated novel genes that might help to further elucidate the mechanisms of basement membrane anchorage and of the disease's aetiology. In addition, the novel genes might prove helpful to unravel the molecular nature of thus far unresolved cases of the human disease.


Zdroje

1. SlavotinekAM

TifftCJ

2002 Fraser syndrome and cryptophthalmos: review of the diagnostic criteria and evidence for phenotypic modules in complex malformation syndromes. J Med Genet 39 623 633

2. JadejaS

SmythI

PiteraJE

TaylorMS

van HaelstM

2005 Identification of a new gene mutated in Fraser syndrome and mouse myelencephalic blebs. Nat Genet 37 520 525

3. McGregorL

MakelaV

DarlingSM

VrontouS

ChalepakisG

2003 Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/Fras1 encoding a putative extracellular matrix protein. Nat Genet 34 203 208

4. VrontouS

PetrouP

MeyerBI

GalanopoulosVK

ImaiK

2003 Fras1 deficiency results in cryptophthalmos, renal agenesis and blebbed phenotype in mice. Nat Genet 34 209 214

5. KiyozumiD

SugimotoN

NakanoI

SekiguchiK

2007 Frem3, a member of the 12 CSPG repeats-containing extracellular matrix protein family, is a basement membrane protein with tissue distribution patterns distinct from those of Fras1, Frem2, and QBRICK/Frem1. Matrix Biol 26 456 462

6. SmythI

DuX

TaylorMS

JusticeMJ

BeutlerB

2004 The extracellular matrix gene Frem1 is essential for the normal adhesion of the embryonic epidermis. Proc Natl Acad Sci U S A 101 13560 13565

7. SmythI

ScamblerP

2005 The genetics of Fraser syndrome and the blebs mouse mutants. Hum Mol Genet 14 Spec No. 2 R269 274

8. WinterRM

1988 Malformation syndromes: a review of mouse/human homology. J Med Genet 25 480 487

9. TakamiyaK

KostourouV

AdamsS

JadejaS

ChalepakisG

2004 A direct functional link between the multi-PDZ domain protein GRIP1 and the Fraser syndrome protein Fras1. Nat Genet 36 172 177

10. PetrouP

ChiotakiR

DaleziosY

ChalepakisG

2007 Overlapping and divergent localization of Frem1 and Fras1 and its functional implications during mouse embryonic development. Exp Cell Res 313 910 920

11. PetrouP

PavlakisE

DaleziosY

ChalepakisG

2007 Basement membrane localization of Frem3 is independent of the Fras1/Frem1/Frem2 protein complex within the sublamina densa. Matrix Biol 26 652 658

12. ShortK

WiradjajaF

SmythI

2007 Let's stick together: the role of the Fras1 and Frem proteins in epidermal adhesion. IUBMB Life 59 427 435

13. van EedenFJ

GranatoM

SchachU

BrandM

Furutani-SeikiM

1996 Genetic analysis of fin formation in the zebrafish, Danio rerio. Development 123 255 262

14. GrandelH

Schulte-MerkerS

1998 The development of the paired fins in the zebrafish (Danio rerio). Mech Dev 79 99 120

15. MabeePM

CrotwellPL

BirdNC

BurkeAC

2002 Evolution of median fin modules in the axial skeleton of fishes. J Exp Zool 294 77 90

16. DanePJ

TuckerJB

1985 Modulation of epidermal cell shaping and extracellular matrix during caudal fin morphogenesis in the zebra fish Brachydanio rerio. J Embryol Exp Morphol 87 145 161

17. CapdevilaJ

Izpisua BelmonteJC

2001 Patterning mechanisms controlling vertebrate limb development. Annu Rev Cell Dev Biol 17 87 132

18. GansnerJM

MadsenEC

MechamRP

GitlinJD

2008 Essential role for fibrillin-2 in zebrafish notochord and vascular morphogenesis. Dev Dyn 237 2844 2861

19. WalkerMB

MillerCT

Coffin TalbotJ

StockDW

KimmelCB

2006 Zebrafish furin mutants reveal intricacies in regulating Endothelin1 signaling in craniofacial patterning. Dev Biol 295 194 205

20. KramerC

MayrT

NowakM

SchumacherJ

RunkeG

2002 Maternally supplied Smad5 is required for ventral specification in zebrafish embryos prior to zygotic Bmp signaling. Dev Biol 250 263 279

21. WebbAE

SanderfordJ

FrankD

TalbotWS

DrieverW

2007 Laminin alpha5 is essential for the formation of the zebrafish fins. Dev Biol 311 369 382

22. NishiuchiR

MurayamaO

FujiwaraH

GuJ

KawakamiT

2003 Characterization of the ligand-binding specificities of integrin alpha3beta1 and alpha6beta1 using a panel of purified laminin isoforms containing distinct alpha chains. J Biochem 134 497 504

23. KiyozumiD

SugimotoN

SekiguchiK

2006 Breakdown of the reciprocal stabilization of QBRICK/Frem1, Fras1, and Frem2 at the basement membrane provokes Fraser syndrome-like defects. Proc Natl Acad Sci U S A 103 11981 11986

24. GautierP

Naranjo-GolborneC

TaylorMS

JacksonIJ

SmythI

2008 Expression of the fras1/frem gene family during zebrafish development and fin morphogenesis. Dev Dyn 237 3295 3304

25. TarbashevichK

KoebernickK

PielerT

2007 XGRIP2.1 is encoded by a vegetally localizing, maternal mRNA and functions in germ cell development and anteroposterior PGC positioning in Xenopus laevis. Dev Biol 311 554 565

26. PiotrowskiT

SchillingTF

BrandM

JiangYJ

HeisenbergCP

1996 Jaw and branchial arch mutants in zebrafish II: anterior arches and cartilage differentiation. Development 123 345 356

27. VogelBE

HedgecockEM

2001 Hemicentin, a conserved extracellular member of the immunoglobulin superfamily, organizes epithelial and other cell attachments into oriented line-shaped junctions. Development 128 883 894

28. VogelBE

MurielJM

DongC

XuX

2006 Hemicentins: what have we learned from worms? Cell Res 16 872 878

29. XuX

DongC

VogelBE

2007 Hemicentins assemble on diverse epithelia in the mouse. J Histochem Cytochem 55 119 126

30. El-HallousE

SasakiT

HubmacherD

GetieM

TiedemannK

2007 Fibrillin-1 interactions with fibulins depend on the first hybrid domain and provide an adaptor function to tropoelastin. J Biol Chem 282 8935 8946

31. ReinhardtDP

SasakiT

DzambaBJ

KeeneDR

ChuML

1996 Fibrillin-1 and fibulin-2 interact and are colocalized in some tissues. J Biol Chem 271 19489 19496

32. DaleziosY

PapasozomenosB

PetrouP

ChalepakisG

2007 Ultrastructural localization of Fras1 in the sublamina densa of embryonic epithelial basement membranes. Arch Dermatol Res 299 337 343

33. FreitasR

ZhangG

CohnMJ

2006 Evidence that mechanisms of fin development evolved in the midline of early vertebrates. Nature 442 1033 1037

34. ColeNJ

CurriePD

2007 Insights from sharks: evolutionary and developmental models of fin development. Dev Dyn 236 2421 2431

35. Manouvrier-HanuS

Holder-EspinasseM

LyonnetS

1999 Genetics of limb anomalies in humans. Trends Genet 15 409 417

36. AlazamiAM

ShaheenR

AlzahraniF

SnapeK

SaggarA

2009 FREM1 mutations cause bifid nose, renal agenesis, and anorectal malformations syndrome. Am J Hum Genet 85 414 418

37. VeitG

ZiminaEP

FranzkeCW

KutschS

SieboldsU

2007 Shedding of collagen XXIII is mediated by furin and depends on the plasma membrane microenvironment. J Biol Chem 282 27424 27435

38. HammerschmidtM

MullinsMC

2002 Dorsoventral patterning in the zebrafish: bone morphogenetic proteins and beyond. Results Probl Cell Differ 40 72 95

39. LehmannM

RigotV

SeidahNG

MarvaldiJ

LissitzkyJC

1996 Lack of integrin alpha-chain endoproteolytic cleavage in furin-deficient human colon adenocarcinoma cells LoVo. Biochem J 317(Pt 3) 803 809

40. HaffterP

GranatoM

BrandM

MullinsMC

HammerschmidtM

1996 The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123 1 36

41. SonawaneM

CarpioY

GeislerR

SchwarzH

MaischeinHM

2005 Zebrafish penner/lethal giant larvae 2 functions in hemidesmosome formation, maintenance of cellular morphology and growth regulation in the developing basal epidermis. Development 132 3255 3265

42. Arteaga-SolisE

GayraudB

LeeSY

ShumL

SakaiL

2001 Regulation of limb patterning by extracellular microfibrils. J Cell Biol 154 275 281

43. KiyozumiD

OsadaA

SugimotoN

WeberCN

OnoY

2005 Identification of a novel cell-adhesive protein spatiotemporally expressed in the basement membrane of mouse developing hair follicle. Exp Cell Res 306 9 23

44. ChartierNT

LaineM

GoutS

PawlakG

MarieCA

2006 Laminin-5-integrin interaction signals through PI 3-kinase and Rac1b to promote assembly of adherens junctions in HT-29 cells. J Cell Sci 119 31 46

45. ArgravesWS

GreeneLM

CooleyMA

GallagherWM

2003 Fibulins: physiological and disease perspectives. EMBO Rep 4 1127 1131

46. de VegaS

IwamotoT

YamadaY

2009 Fibulins: Multiple roles in matrix structures and tissue functions. Cell Mol Life Sci

47. TimplR

SasakiT

KostkaG

ChuML

2003 Fibulins: a versatile family of extracellular matrix proteins. Nat Rev Mol Cell Biol 4 479 489

48. KimmelCB

BallardWW

KimmelSR

UllmannB

SchillingTF

1995 Stages of embryonic development of the zebrafish. Dev Dyn 203 253 310

49. GeislerR

2002 Mapping and cloning.

Nüsslein-VolhardC

DahmR

Zebrafish: a practical approach Oxford Oxford University Press 175 212

50. SlanchevK

CarneyTJ

StemmlerMP

KoschorzB

AmsterdamA

2009 The epithelial cell adhesion molecule EpCAM is required for epithelial morphogenesis and integrity during zebrafish epiboly and skin development. PLoS Genet 5 e1000563 doi:10.1371/journal.pgen.1000563

51. HammerschmidtM

PelegriF

MullinsMC

KaneDA

van EedenFJ

1996 dino and mercedes, two genes regulating dorsal development in the zebrafish embryo. Development 123 95 102

52. NaseviciusA

EkkerSC

2000 Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26 216 220

53. CooperMS

SzetoDP

Sommers-HerivelG

TopczewskiJ

Solnica-KrezelL

2005 Visualizing morphogenesis in transgenic zebrafish embryos using BODIPY TR methyl ester dye as a vital counterstain for GFP. Dev Dyn 232 359 368

54. WangP

TortorellaM

EnglandK

MalfaitAM

ThomasG

2004 Proprotein convertase furin interacts with and cleaves pro-ADAMTS4 (Aggrecanase-1) in the trans-Golgi network. J Biol Chem 279 15434 15440

55. DufourEK

DesiletsA

LongpreJM

LeducR

2005 Stability of mutant serpin/furin complexes: dependence on pH and regulation at the deacylation step. Protein Sci 14 303 315

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#