Activated Cdc42 Kinase Has an Anti-Apoptotic Function
Activated Cdc42 kinases (Acks) are evolutionarily conserved non-receptor tyrosine kinases. Activating somatic mutations and increased ACK1 protein levels have been found in many types of human cancers and correlate with a poor prognosis. ACK1 is activated by epidermal growth factor (EGF) receptor signaling and functions to regulate EGF receptor turnover. ACK1 has additionally been found to propagate downstream signals through the phosphorylation of cancer relevant substrates. Using Drosophila as a model organism, we have determined that Drosophila Ack possesses potent anti-apoptotic activity that is dependent on Ack kinase activity and is further activated by EGF receptor/Ras signaling. Ack anti-apoptotic signaling does not function through enhancement of EGF stimulated MAP kinase signaling, suggesting that it must function through phosphorylation of some unknown effector. We isolated several putative Drosophila Ack interacting proteins, many being orthologs of previously identified human ACK1 interacting proteins. Two of these interacting proteins, Drk and yorkie, were found to influence Ack signaling. Drk is the Drosophila homolog of GRB2, which is required to couple ACK1 binding to receptor tyrosine kinases. Drk knockdown blocks Ack survival activity, suggesting that Ack localization is important for its pro-survival activity. Yorkie is a transcriptional co-activator that is downstream of the Salvador-Hippo-Warts pathway and promotes transcription of proliferative and anti-apoptotic genes. We find that yorkie and Ack synergistically interact to produce tissue overgrowth and that yorkie loss of function interferes with Ack anti-apoptotic signaling. Our results demonstrate how increased Ack signaling could contribute to cancer when coupled to proliferative signals.
Vyšlo v časopise:
Activated Cdc42 Kinase Has an Anti-Apoptotic Function. PLoS Genet 8(5): e32767. doi:10.1371/journal.pgen.1002725
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002725
Souhrn
Activated Cdc42 kinases (Acks) are evolutionarily conserved non-receptor tyrosine kinases. Activating somatic mutations and increased ACK1 protein levels have been found in many types of human cancers and correlate with a poor prognosis. ACK1 is activated by epidermal growth factor (EGF) receptor signaling and functions to regulate EGF receptor turnover. ACK1 has additionally been found to propagate downstream signals through the phosphorylation of cancer relevant substrates. Using Drosophila as a model organism, we have determined that Drosophila Ack possesses potent anti-apoptotic activity that is dependent on Ack kinase activity and is further activated by EGF receptor/Ras signaling. Ack anti-apoptotic signaling does not function through enhancement of EGF stimulated MAP kinase signaling, suggesting that it must function through phosphorylation of some unknown effector. We isolated several putative Drosophila Ack interacting proteins, many being orthologs of previously identified human ACK1 interacting proteins. Two of these interacting proteins, Drk and yorkie, were found to influence Ack signaling. Drk is the Drosophila homolog of GRB2, which is required to couple ACK1 binding to receptor tyrosine kinases. Drk knockdown blocks Ack survival activity, suggesting that Ack localization is important for its pro-survival activity. Yorkie is a transcriptional co-activator that is downstream of the Salvador-Hippo-Warts pathway and promotes transcription of proliferative and anti-apoptotic genes. We find that yorkie and Ack synergistically interact to produce tissue overgrowth and that yorkie loss of function interferes with Ack anti-apoptotic signaling. Our results demonstrate how increased Ack signaling could contribute to cancer when coupled to proliferative signals.
Zdroje
1. ManserELeungTSalihuddinHTanLLimL 1993 A non-receptor tyrosine kinase that inhibits the GTPase activity of p21cdc42. Nature 363 364 367
2. YokoyamaNMillerWT 2003 Biochemical properties of the Cdc42-associated tyrosine kinase ACK1. Substrate specificity, authphosphorylation, and interaction with Hck. J Biol Chem 278 47713 47723
3. CotteretSChernoffJ 2002 The evolutionary history of effectors downstream of Cdc42 and Rac. Genome Biol 3 REVIEWS0002
4. SemKPZahediBTanIDeakMLimL 2002 ACK family tyrosine kinase activity is a component of Dcdc42 signaling during dorsal closure in Drosophila melanogaster. Mol Cell Biol 22 3685 3697
5. ShenFLinQGuYChildressCYangW 2007 Activated Cdc42-associated kinase 1 is a component of EGF receptor signaling complex and regulates EGF receptor degradation. Mol Biol Cell 18 732 742
6. ChanWTianRLeeYFSitSTLimL 2009 Down-regulation of Active ACK1 Is Mediated by Association with the E3 Ubiquitin Ligase Nedd4-2. J Biol Chem 284 8185 8194
7. LinQWangJChildressCSudolMCareyDJ 2010 HECT E3 ubiquitin ligase Nedd4-1 ubiquitinates ACK and regulates epidermal growth factor (EGF)-induced degradation of EGF receptor and ACK. Mol Cell Biol 30 1541 1554
8. YangWLinQZhaoJGuanJLCerioneRA 2001 The nonreceptor tyrosine kinase ACK2, a specific target for Cdc42 and a negative regulator of cell growth and focal adhesion complexes. J Biol Chem 276 43987 43993
9. YangWLoCGDispenzaTCerioneRA 2001 The Cdc42 target ACK2 directly interacts with clathrin and influences clathrin assembly. J Biol Chem 276 17468 17473
10. MahajanKCoppolaDChallaSFangBChenYA 2010 Ack1 mediated AKT/PKB tyrosine 176 phosphorylation regulates its activation. PLoS ONE 5 e9646 doi:10.1371/journal.pone.0009646
11. MahajanNPLiuYMajumderSWarrenMRParkerCE 2007 Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc Natl Acad Sci U S A 104 8438 8443
12. Prieto-EchagueVGucwaABrownDAMillerWT 2010 Regulation of Ack1 localization and activity by the amino-terminal SAM domain. BMC Biochem 11 42
13. van der HorstEHDegenhardtYYStrelowASlavinAChinnL 2005 Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc Natl Acad Sci U S A 102 15901 15906
14. HowlinJRosenkvistJAnderssonT 2008 TNK2 preserves epidermal growth factor receptor expression on the cell surface and enhances migration and invasion of human breast cancer cells. Breast Cancer Res 10 R36
15. LiuZAdamsHC3rdWhiteheadIP 2009 The rho-specific guanine nucleotide exchange factor Dbs regulates breast cancer cell migration. J Biol Chem 284 15771 15780
16. MahajanNPWhangYEMohlerJLEarpHS 2005 Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox. Cancer Res 65 10514 10523
17. BednarekAKLaflinKJDanielRLLiaoQHawkinsKA 2000 WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3–24.1, a region frequently affected in breast cancer. Cancer Res 60 2140 2145
18. FinnisMDayanSHobsonLChenevix-TrenchGFriendK 2005 Common chromosomal fragile site FRA16D mutation in cancer cells. Hum Mol Genet 14 1341 1349
19. RiedKFinnisMHobsonLMangelsdorfMDayanS 2000 Common chromosomal fragile site FRA16D sequence: identification of the FOR gene spanning FRA16D and homozygous deletions and translocation breakpoints in cancer cells. Hum Mol Genet 9 1651 1663
20. BednarekAKKeck-WaggonerCLDanielRLLaflinKJBergsagelPL 2001 WWOX, the FRA16D gene, behaves as a suppressor of tumor growth. Cancer Res 61 8068 8073
21. BellacosaAKumarCCDi CristofanoATestaJR 2005 Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res 94 29 86
22. GrossmannMEHuangHTindallDJ 2001 Androgen receptor signaling in androgen-refractory prostate cancer. J Natl Cancer Inst 93 1687 1697
23. ChenCDWelsbieDSTranCBaekSHChenR 2004 Molecular determinants of resistance to antiandrogen therapy. Nat Med 10 33 39
24. HoareKHoareSSmithOMKalmazGSmallD 2003 Kos1, a nonreceptor tyrosine kinase that suppresses Ras signaling. Oncogene 22 3562 3577
25. HoareSHoareKReinhardMKLeeYJOhSP 2008 Tnk1/Kos1 knockout mice develop spontaneous tumors. Cancer Res 68 8723 8732
26. MayWSHoareKHoareSReinhardMKLeeYJ 2010 Tnk1/Kos1: a novel tumor suppressor. Trans Am Clin Climatol Assoc 121 281 292; discussion 292-283
27. LiermanEVan MiegroetHBeullensECoolsJ 2009 Identification of protein tyrosine kinases with oncogenic potential using a retroviral insertion mutagenesis screen. Haematologica 94 1440 1444
28. GuTLCherryJTuckerMWuJReevesC 2010 Identification of activated Tnk1 kinase in Hodgkin's lymphoma. Leukemia 24 861 865
29. ZahediBShenWXuXChenXMaheyM 2008 Leading edge-secreted Dpp cooperates with ACK-dependent signaling from the amnioserosa to regulate myosin levels during dorsal closure. Dev Dyn 237 2936 2946
30. BellenHJLevisRWLiaoGHeYCarlsonJW 2004 The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167 761 781
31. AramaEAgapiteJStellerH 2003 Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev Cell 4 687 697
32. SantelABlumerNKampferMRenkawitz-PohlR 1998 Flagellar mitochondrial association of the male-specific Don Juan protein in Drosophila spermatozoa. J Cell Sci 111 Pt 22 3299 3309
33. SantelAWinhauerTBlumerNRenkawitz-PohlR 1997 The Drosophila don juan (dj) gene encodes a novel sperm specific protein component characterized by an unusual domain of a repetitive amino acid motif. Mech Dev 64 19 30
34. GretherMEAbramsJMAgapiteJWhiteKStellerH 1995 The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev 9 1694 1708
35. BergmannAAgapiteJMcCallKStellerH 1998 The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 95 331 341
36. WhiteKGretherMEAbramsJMYoungLFarrellK 1994 Genetic control of programmed cell death in Drosophila. Science 264 677 683
37. ChenPNordstromWGishBAbramsJM 1996 grim, a novel cell death gene in Drosophila. Genes Dev 10 1773 1782
38. GoyalLMcCallKAgapiteJHartwiegEStellerH 2000 Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. Embo J 19 589 597
39. BergmannAYangAYSrivastavaM 2003 Regulators of IAP function: coming to grips with the grim reaper. Curr Opin Cell Biol 15 717 724
40. ZachariouATenevTGoyalLAgapiteJStellerH 2003 IAP-antagonists exhibit non-redundant modes of action through differential DIAP1 binding. Embo J 22 6642 6652
41. ReadyDFHansonTEBenzerS 1976 Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol 53 217 240
42. WolffTReadyDF 1991 Cell death in normal and rough eye mutants of Drosophila. Development 113 825 839
43. SrivastavaMScherrHLackeyMXuDChenZ 2007 ARK, the Apaf-1 related killer in Drosophila, requires diverse domains for its apoptotic activity. Cell Death Differ 14 92 102
44. FanYBergmannA 2010 The cleaved-Caspase-3 antibody is a marker of Caspase-9-like DRONC activity in Drosophila. Cell Death Differ 17 534 539
45. Smith-BoltonRKWorleyMIKandaHHariharanIK 2009 Regenerative growth in Drosophila imaginal discs is regulated by Wingless and Myc. Dev Cell 16 797 809
46. KuradaPWhiteK 1999 Epidermal growth factor receptor: its role in Drosophila eye differentiation and cell survival. Apoptosis 4 239 243
47. GrovdalLMJohannessenLERodlandMSMadshusIHStangE 2008 Dysregulation of Ack1 inhibits down-regulation of the EGF receptor. Exp Cell Res 314 1292 1300
48. SawamotoKTaguchiAHirotaYYamadaCJinM 1998 Argos induces programmed cell death in the developing Drosophila eye by inhibition of the Ras pathway. Cell Death Differ 5 548
49. GaulUMardonGRubinGM 1992 A putative Ras GTPase activating protein acts as a negative regulator of signaling by the Sevenless receptor tyrosine kinase. Cell 68 1007 1019
50. GalisteoMLYangYUrenaJSchlessingerJ 2006 Activation of the nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. Proc Natl Acad Sci U S A 103 9796 9801
51. SatohTKatoJNishidaKKaziroY 1996 Tyrosine phosphorylation of ACK in response to temperature shift-down, hyperosmotic shock, and epidermal growth factor stimulation. FEBS Lett 386 230 234
52. MahajanKMahajanNP 2010 Shepherding AKT and androgen receptor by Ack1 tyrosine kinase. J Cell Physiol 224 327 333
53. HopperNALeeJSternbergPW 2000 ARK-1 inhibits EGFR signaling in C. elegans. Mol Cell 6 65 75
54. WuSLiuYZhengYDongJPanD 2008 The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Dev Cell 14 388 398
55. ZhangLRenFZhangQChenYWangB 2008 The TEAD/TEF family of transcription factor Scalloped mediates Hippo signaling in organ size control. Dev Cell 14 377 387
56. BadouelCGardanoLAminNGargARosenfeldR 2009 The FERM-domain protein Expanded regulates Hippo pathway activity via direct interactions with the transcriptional activator Yorkie. Dev Cell 16 411 420
57. HuangJWuSBarreraJMatthewsKPanD 2005 The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122 421 434
58. OhHIrvineKD 2008 In vivo regulation of Yorkie phosphorylation and localization. Development 135 1081 1088
59. ZhaoBYeXYuJLiLLiW 2008 TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22 1962 1971
60. SanduCRyooHDStellerH 2010 Drosophila IAP antagonists form multimeric complexes to promote cell death. J Cell Biol 190 1039 1052
61. ClemensJCWorbyCASimonson-LeffNMudaMMaehamaT 2000 Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci U S A 97 6499 6503
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2012 Číslo 5
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- Inactivation of a Novel FGF23 Regulator, FAM20C, Leads to Hypophosphatemic Rickets in Mice
- Genome-Wide Association of Pericardial Fat Identifies a Unique Locus for Ectopic Fat
- Slowing Replication in Preparation for Reduction
- Deletion of PTH Rescues Skeletal Abnormalities and High Osteopontin Levels in Mice