#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Histone H1 Depletion Impairs Embryonic Stem Cell Differentiation


Pluripotent embryonic stem cells (ESCs) are known to possess a relatively open chromatin structure; yet, despite efforts to characterize the chromatin signatures of ESCs, the role of chromatin compaction in stem cell fate and function remains elusive. Linker histone H1 is important for higher-order chromatin folding and is essential for mammalian embryogenesis. To investigate the role of H1 and chromatin compaction in stem cell pluripotency and differentiation, we examine the differentiation of embryonic stem cells that are depleted of multiple H1 subtypes. H1c/H1d/H1e triple null ESCs are more resistant to spontaneous differentiation in adherent monolayer culture upon removal of leukemia inhibitory factor. Similarly, the majority of the triple-H1 null embryoid bodies (EBs) lack morphological structures representing the three germ layers and retain gene expression signatures characteristic of undifferentiated ESCs. Furthermore, upon neural differentiation of EBs, triple-H1 null cell cultures are deficient in neurite outgrowth and lack efficient activation of neural markers. Finally, we discover that triple-H1 null embryos and EBs fail to fully repress the expression of the pluripotency genes in comparison with wild-type controls and that H1 depletion impairs DNA methylation and changes of histone marks at promoter regions necessary for efficiently silencing pluripotency gene Oct4 during stem cell differentiation and embryogenesis. In summary, we demonstrate that H1 plays a critical role in pluripotent stem cell differentiation, and our results suggest that H1 and chromatin compaction may mediate pluripotent stem cell differentiation through epigenetic repression of the pluripotency genes.


Vyšlo v časopise: Histone H1 Depletion Impairs Embryonic Stem Cell Differentiation. PLoS Genet 8(5): e32767. doi:10.1371/journal.pgen.1002691
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002691

Souhrn

Pluripotent embryonic stem cells (ESCs) are known to possess a relatively open chromatin structure; yet, despite efforts to characterize the chromatin signatures of ESCs, the role of chromatin compaction in stem cell fate and function remains elusive. Linker histone H1 is important for higher-order chromatin folding and is essential for mammalian embryogenesis. To investigate the role of H1 and chromatin compaction in stem cell pluripotency and differentiation, we examine the differentiation of embryonic stem cells that are depleted of multiple H1 subtypes. H1c/H1d/H1e triple null ESCs are more resistant to spontaneous differentiation in adherent monolayer culture upon removal of leukemia inhibitory factor. Similarly, the majority of the triple-H1 null embryoid bodies (EBs) lack morphological structures representing the three germ layers and retain gene expression signatures characteristic of undifferentiated ESCs. Furthermore, upon neural differentiation of EBs, triple-H1 null cell cultures are deficient in neurite outgrowth and lack efficient activation of neural markers. Finally, we discover that triple-H1 null embryos and EBs fail to fully repress the expression of the pluripotency genes in comparison with wild-type controls and that H1 depletion impairs DNA methylation and changes of histone marks at promoter regions necessary for efficiently silencing pluripotency gene Oct4 during stem cell differentiation and embryogenesis. In summary, we demonstrate that H1 plays a critical role in pluripotent stem cell differentiation, and our results suggest that H1 and chromatin compaction may mediate pluripotent stem cell differentiation through epigenetic repression of the pluripotency genes.


Zdroje

1. BernsteinBEMikkelsenTSXieXKamalMHuebertDJ 2006 A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125 315 326

2. EfroniSDuttaguptaRChengJDehghaniHHoeppnerDJ 2008 Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2 437 447

3. MeissnerA 2010 Epigenetic modifications in pluripotent and differentiated cells. Nat Biotechnol 28 1079 1088

4. OrkinSHHochedlingerK 2011 Chromatin connections to pluripotency and cellular reprogramming. Cell 145 835 850

5. AhmedKDehghaniHRugg-GunnPFussnerERossantJ 2010 Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo. PLoS ONE 5 e10531 doi:10.1371/journal.pone.0010531

6. MeshorerEYellajoshulaDGeorgeEScamblerPJBrownDT 2006 Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 10 105 116

7. FussnerEAhmedKDehghaniHStraussMBazett-JonesDP 2010 Changes in chromatin fiber density as a marker for pluripotency. Cold Spring Harb Symp Quant Biol 75 245 249

8. Gaspar-MaiaAAlajemAMeshorerERamalho-SantosM 2011 Open chromatin in pluripotency and reprogramming. Nat Rev Mol Cell Biol 12 36 47

9. WolffeAP 1998 Chromatin: Structure and Function San Diego, CA Academic Press, San Diego, CA

10. FanYNikitinaTZhaoJFleuryTJBhattacharyyaR 2005 Histone h1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell 123 1199 1212

11. WoodcockCLSkoultchiAIFanY 2006 Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res 14 17 25

12. ShenXYuLWeirJWGorovskyMA 1995 Linker histones are not essential and affect chromatin condensation in vivo. Cell 82 47 56

13. HappelNDoeneckeD 2009 Histone H1 and its isoforms: contribution to chromatin structure and function. Gene 431 1 12

14. FanYSirotkinARussellRGAyalaJSkoultchiAI 2001 Individual somatic H1 subtypes are dispensable for mouse development even in mice lacking the H1(0) replacement subtype. Mol Cell Biol 21 7933 7943

15. FanYNikitinaTMorin-KensickiEMZhaoJMagnusonTR 2003 H1 linker histones are essential for mouse development and affect nucleosome spacing in vivo. Mol Cell Biol 23 4559 4572

16. EskelandRLeebMGrimesGRKressCBoyleS 2010 Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol Cell 38 452 464

17. MereauAGreyLPiquet-PellorceCHeathJK 1993 Characterization of a binding protein for leukemia inhibitory factor localized in extracellular matrix. J Cell Biol 122 713 719

18. CarpenedoRLSargentCYMcDevittTC 2007 Rotary suspension culture enhances the efficiency, yield, and homogeneity of embryoid body differentiation. Stem Cells 25 2224 2234

19. KimMHabibaADohertyJMMillsJCMercerRW 2009 Regulation of mouse embryonic stem cell neural differentiation by retinoic acid. Dev Biol 328 456 471

20. BainGKitchensDYaoMHuettnerJEGottliebDI 1995 Embryonic stem cells express neuronal properties in vitro. Dev Biol 168 342 357

21. da SilvaJSDottiCG 2002 Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 3 694 704

22. FanYSkoultchiAI 2004 Genetic analysis of H1 linker histone subtypes and their functions in mice. Methods Enzymol 377 85 107

23. MedrzyckiMZhangYCaoKFanY 2012 Expression Analysis of Mammalian Linker-histone Subtypes. J Vis Exp 61 e3577

24. OvittCEScholerHR 1998 The molecular biology of Oct-4 in the early mouse embryo. Mol Hum Reprod 4 1021 1031

25. ChambersIColbyDRobertsonMNicholsJLeeS 2003 Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113 643 655

26. FarthingCRFiczGNgRKChanCFAndrewsS 2008 Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet 4 e1000116 doi:10.1371/journal.pgen.1000116

27. EvansMJKaufmanMH 1981 Establishment in culture of pluripotential cells from mouse embryos. Nature 292 154 156

28. ThomsonJAItskovitz-EldorJShapiroSSWaknitzMASwiergielJJ 1998 Embryonic stem cell lines derived from human blastocysts. Science 282 1145 1147

29. BoyerLALeeTIColeMFJohnstoneSELevineSS 2005 Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122 947 956

30. KashyapVRezendeNCScotlandKBShafferSMPerssonJL 2009 Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev 18 1093 1108

31. DialynasGKTerjungSBrownJPAucottRLBaron-LuhrB 2007 Plasticity of HP1 proteins in mammalian cells. J Cell Sci 120 3415 3424

32. DouYBowenJLiuYGorovskyMA 2002 Phosphorylation and an ATP-dependent process increase the dynamic exchange of H1 in chromatin. J Cell Biol 158 1161 1170

33. HendzelMJLeverMACrawfordETh'ngJP 2004 The C-terminal domain is the primary determinant of histone H1 binding to chromatin in vivo. J Biol Chem 279 20028 20034

34. SargentCYBerguigGYMcDevittTC 2009 Cardiomyogenic differentiation of embryoid bodies is promoted by rotary orbital suspension culture. Tissue Eng Part A 15 331 342

35. TermeJMSeseBMillan-ArinoLMayorRBelmonteJC 2011 Histone H1 variants are differentially expressed and incorporated into chromatin during differentiation and reprogramming to pluripotency. J Biol Chem 286 35347 35357

36. ShahhoseiniMFavaediRBaharvandHSharmaVStunnenbergHG 2010 Evidence for a dynamic role of the linker histone variant H1x during retinoic acid-induced differentiation of NT2 cells. FEBS Lett 584 4661 4664

37. SirotkinAMEdelmannWChengGKlein-SzantoAKucherlapatiR 1995 Mice develop normally without the H1(0) linker histone. Proc Natl Acad Sci U S A 92 6434 6438

38. LiangJWanMZhangYGuPXinH 2008 Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells. Nat Cell Biol 10 731 739

39. PasiniDBrackenAPHansenJBCapilloMHelinK 2007 The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol 27 3769 3779

40. PasiniDBrackenAPJensenMRLazzerini DenchiEHelinK 2004 Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J 23 4061 4071

41. LeiHOhSPOkanoMJuttermannRGossKA 1996 De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122 3195 3205

42. NiwaHMiyazakiJSmithAG 2000 Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24 372 376

43. SilvaJNicholsJTheunissenTWGuoGvan OostenAL 2009 Nanog is the gateway to the pluripotent ground state. Cell 138 722 737

44. BresnickEHBustinMMarsaudVRichard-FoyHHagerGL 1992 The transcriptionally-active MMTV promoter is depleted of histone H1. Nucleic Acids Res 20 273 278

45. KrishnakumarRGambleMJFrizzellKMBerrocalJGKininisM 2008 Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes. Science 319 819 821

46. GiambraVVolpiSEmelyanovAVPflughDBothwellAL 2008 Pax5 and linker histone H1 coordinate DNA methylation and histone modifications in the 3′ regulatory region of the immunoglobulin heavy chain locus. Mol Cell Biol 28 6123 6133

47. MacleanJBettegowdaAKimBJLouCHYangSM 2011 The Rhox Homeobox Gene Cluster is Imprinted and Selectively Targeted for Regulation by Histone H1 and DNA Methylation. Mol Cell Biol

48. FeldmanNGersonAFangJLiEZhangY 2006 G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol 8 188 194

49. KashiwagiKNimuraKUraKKanedaY 2011 DNA methyltransferase 3b preferentially associates with condensed chromatin. Nucleic Acids Res 39 874 888

50. DaujatSZeisslerUWaldmannTHappelNSchneiderR 2005 HP1 binds specifically to Lys26-methylated histone H1.4, whereas simultaneous Ser27 phosphorylation blocks HP1 binding. J Biol Chem 280 38090 38095

51. NielsenALOulad-AbdelghaniMOrtizJARemboutsikaEChambonP 2001 Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins. Mol Cell 7 729 739

52. MartinCCaoRZhangY 2006 Substrate preferences of the EZH2 histone methyltransferase complex. J Biol Chem 281 8365 8370

53. FanYBrautSALinQSingerRHSkoultchiAI 2001 Determination of transgenic loci by expression FISH. Genomics 71 66 69

54. BockCReitherSMikeskaTPaulsenMWalterJ 2005 BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics 21 4067 4068

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#