Allelic Variation and Differential Expression of the mSIN3A Histone Deacetylase Complex Gene Promote Mammary Tumor Growth and Metastasis
Accumulating evidence suggests that breast cancer metastatic progression is modified by germline polymorphism, although specific modifier genes have remained largely undefined. In the current study, we employ the MMTV-PyMT transgenic mouse model and the AKXD panel of recombinant inbred mice to identify AT–rich interactive domain 4B (Arid4b; NM_194262) as a breast cancer progression modifier gene. Ectopic expression of Arid4b promoted primary tumor growth in vivo as well as increased migration and invasion in vitro, and the phenotype was associated with polymorphisms identified between the AKR/J and DBA/2J alleles as predicted by our genetic analyses. Stable shRNA–mediated knockdown of Arid4b caused a significant reduction in pulmonary metastases, validating a role for Arid4b as a metastasis modifier gene. ARID4B physically interacts with the breast cancer metastasis suppressor BRMS1, and we detected differential binding of the Arid4b alleles to histone deacetylase complex members mSIN3A and mSDS3, suggesting that the mechanism of Arid4b action likely involves interactions with chromatin modifying complexes. Downregulation of the conserved Tpx2 gene network, which is comprised of many factors regulating cell cycle and mitotic spindle biology, was observed concomitant with loss of metastatic efficiency in Arid4b knockdown cells. Consistent with our genetic analysis and in vivo experiments in our mouse model system, ARID4B expression was also an independent predictor of distant metastasis-free survival in breast cancer patients with ER+ tumors. These studies support a causative role of ARID4B in metastatic progression of breast cancer.
Vyšlo v časopise:
Allelic Variation and Differential Expression of the mSIN3A Histone Deacetylase Complex Gene Promote Mammary Tumor Growth and Metastasis. PLoS Genet 8(5): e32767. doi:10.1371/journal.pgen.1002735
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002735
Souhrn
Accumulating evidence suggests that breast cancer metastatic progression is modified by germline polymorphism, although specific modifier genes have remained largely undefined. In the current study, we employ the MMTV-PyMT transgenic mouse model and the AKXD panel of recombinant inbred mice to identify AT–rich interactive domain 4B (Arid4b; NM_194262) as a breast cancer progression modifier gene. Ectopic expression of Arid4b promoted primary tumor growth in vivo as well as increased migration and invasion in vitro, and the phenotype was associated with polymorphisms identified between the AKR/J and DBA/2J alleles as predicted by our genetic analyses. Stable shRNA–mediated knockdown of Arid4b caused a significant reduction in pulmonary metastases, validating a role for Arid4b as a metastasis modifier gene. ARID4B physically interacts with the breast cancer metastasis suppressor BRMS1, and we detected differential binding of the Arid4b alleles to histone deacetylase complex members mSIN3A and mSDS3, suggesting that the mechanism of Arid4b action likely involves interactions with chromatin modifying complexes. Downregulation of the conserved Tpx2 gene network, which is comprised of many factors regulating cell cycle and mitotic spindle biology, was observed concomitant with loss of metastatic efficiency in Arid4b knockdown cells. Consistent with our genetic analysis and in vivo experiments in our mouse model system, ARID4B expression was also an independent predictor of distant metastasis-free survival in breast cancer patients with ER+ tumors. These studies support a causative role of ARID4B in metastatic progression of breast cancer.
Zdroje
1. American Cancer Society 2012 Cancer Facts and Figures 2012 Atlanta American Cancer Society
2. LifstedTLe VoyerTWilliamsMMullerWKlein-SzantoA 1998 Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int J Cancer 77 640 644
3. HunterKWBromanKWVoyerTLLukesLCozmaD 2001 Predisposition to efficient mammary tumor metastatic progression is linked to the breast cancer metastasis suppressor gene Brms1. Cancer Res 61 8866 8872
4. LukesLCrawfordNPWalkerRHunterKW 2009 The origins of breast cancer prognostic gene expression profiles. Cancer Res 69 310 318
5. FleischerTCYunUJAyerDE 2003 Identification and characterization of three new components of the mSin3A corepressor complex. Mol Cell Biol 23 3456 3467
6. HuYWuGRuschMLukesLBuetowKH 2012 Integrated cross-species transcriptional network analysis of metastatic susceptibility. Proc Natl Acad Sci USA 109 8 3184 3189
7. YangHCrawfordNLukesLFinneyRLancasterM 2005 Metastasis predictive signature profiles pre-exist in normal tissues. Clin Exp Metastasis 22 593 603
8. WuCCHuangHCJuanHFChenST 2004 GeneNetwork: an interactive tool for reconstruction of genetic networks using microarray data. Bioinformatics 20 3691 3693
9. ParkYGZhaoXLesueurFLowyDRLancasterM 2005 Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Nat Genet 37 1055 1062
10. BorowskyADNambaRYoungLJHunterKWHodgsonJG 2005 Syngeneic mouse mammary carcinoma cell lines: two closely related cell lines with divergent metastatic behavior. Clin Exp Metastasis 22 47 59
11. PeiXFNobleMSDavoliMARosfjordETilliMT 2004 Explant-cell culture of primary mammary tumors from MMTV-c-Myc transgenic mice. In Vitro Cell Dev Biol Anim 40 14 21
12. AllandLDavidGShen-LiHPotesJMuhleR 2002 Identification of mammalian Sds3 as an integral component of the Sin3/histone deacetylase corepressor complex. Mol Cell Biol 22 2743 2750
13. MeehanWJSamantRSHopperJECarrozzaMJShevdeLA 2004 Breast cancer metastasis suppressor 1 (BRMS1) forms complexes with retinoblastoma-binding protein 1 (RBP1) and the mSin3 histone deacetylase complex and represses transcription. J Biol Chem 279 1562 1569
14. WuMYTsaiTFBeaudetAL 2006 Deficiency of Rbbp1/Arid4a and Rbbp1l1/Arid4b alters epigenetic modifications and suppresses an imprinting defect in the PWS/AS domain. Genes Dev 20 2859 2870
15. RichardsonALWangZCDe NicoloALuXBrownM 2006 X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9 121 132
16. RingnerMFredlundEHakkinenJBorgAStaafJ GOBO: Gene Expression-Based Outcome for Breast Cancer Online. PLoS One 6 e17911 doi:10.1371/journal.pone.0017911
17. AylorDLValdarWFoulds-MathesWBuusRJVerdugoRA Genetic analysis of complex traits in the emerging Collaborative Cross. Genome Res 21 1213 1222
18. ThreadgillDWChurchillGA Ten years of the collaborative cross. Genetics 190 291 294
19. CuiDJinGGaoTSunTTianF 2004 Characterization of BRCAA1 and its novel antigen epitope identification. Cancer Epidemiol Biomarkers Prev 13 1136 1145
20. ToyamaTIwaseHWatsonPMuzikHSaettlerE 1999 Suppression of ING1 expression in sporadic breast cancer. Oncogene 18 5187 5193
21. SkowyraDZeremskiMNeznanovNLiMChoiY 2001 Differential association of products of alternative transcripts of the candidate tumor suppressor ING1 with the mSin3/HDAC1 transcriptional corepressor complex. J Biol Chem 276 8734 8739
22. LaiAKennedyBKBarbieDABertosNRYangXJ 2001 RBP1 recruits the mSIN3-histone deacetylase complex to the pocket of retinoblastoma tumor suppressor family proteins found in limited discrete regions of the nucleus at growth arrest. Mol Cell Biol 21 2918 2932
23. CaoJGaoTGiulianoAEIrieRF 1999 Recognition of an epitope of a breast cancer antigen by human antibody. Breast Cancer Res Treat 53 279 290
24. WilskerDPatsialouADallasPBMoranE 2002 ARID proteins: a diverse family of DNA binding proteins implicated in the control of cell growth, differentiation, and development. Cell Growth Differ 13 95 106
25. DallasPBPacchioneSWilskerDBowrinVKobayashiR 2000 The human SWI-SNF complex protein p270 is an ARID family member with non-sequence-specific DNA binding activity. Mol Cell Biol 20 3137 3146
26. Defeo-JonesDHuangPSJonesREHaskellKMVuocoloGA 1991 Cloning of cDNAs for cellular proteins that bind to the retinoblastoma gene product. Nature 352 251 254
27. PontingCP 1997 Tudor domains in proteins that interact with RNA. Trends Biochem Sci 22 51 52
28. BotuyanMVLeeJWardIMKimJEThompsonJR 2006 Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127 1361 1373
29. EissenbergJC 2001 Molecular biology of the chromo domain: an ancient chromatin module comes of age. Gene 275 19 29
30. GrzendaALomberkGZhangJSUrrutiaR 2009 Sin3: master scaffold and transcriptional corepressor. Biochim Biophys Acta 1789 443 450
31. SilversteinRAEkwallK 2005 Sin3: a flexible regulator of global gene expression and genome stability. Curr Genet 47 1 17
32. LinEYJonesJGLiPZhuLWhitneyKD 2003 Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163 2113 2126
33. HerschkowitzJISiminKWeigmanVJMikaelianIUsaryJ 2007 Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8 R76
34. CrawfordNPQianXZiogasAPapageorgeAGBoersmaBJ 2007 Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis. PLoS Genet 3 e214 doi:10.1371/journal.pgen.0030214
35. AlsarrajJWalkerRCWebsterJDGeigerTRCrawfordNP 2011 Deletion of the Proline-Rich Region of the Murine Metastasis Susceptibility Gene Brd4 Promotes Epithelial-to-Mesenchymal Transition- and Stem Cell-Like Conversion. Cancer Res 71 3121 3131
36. CrawfordNPWalkerRCLukesLOfficewalaJSWilliamsR 2008 The Diasporin Pathway: a tumor progression-related transcriptional network that predicts breast cancer survival. Clin Exp Metastasis
37. HsiehSMLookMPSieuwertsAMFoekensJAHunterKW 2009 Distinct inherited metastasis susceptibility exists for different breast cancer subtypes: a prognosis study. Breast Cancer Res 11 R75
38. ZhangZSchwartzSWagnerLMillerW 2000 A greedy algorithm for aligning DNA sequences. J Comput Biol 7 203 214
39. ShannonPMarkielAOzierOBaligaNSWangJT 2003 Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13 2498 2504
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2012 Číslo 5
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
Najčítanejšie v tomto čísle
- Inactivation of a Novel FGF23 Regulator, FAM20C, Leads to Hypophosphatemic Rickets in Mice
- Genome-Wide Association of Pericardial Fat Identifies a Unique Locus for Ectopic Fat
- Slowing Replication in Preparation for Reduction
- Deletion of PTH Rescues Skeletal Abnormalities and High Osteopontin Levels in Mice