Population Genomics of the Facultatively Mutualistic Bacteria and
The symbiosis between rhizobial bacteria and legume plants has served as a model for investigating the genetics of nitrogen fixation and the evolution of facultative mutualism. We used deep sequence coverage (>100×) to characterize genomic diversity at the nucleotide level among 12 Sinorhizobium medicae and 32 S. meliloti strains. Although these species are closely related and share host plants, based on the ratio of shared polymorphisms to fixed differences we found that horizontal gene transfer (HGT) between these species was confined almost exclusively to plasmid genes. Three multi-genic regions that show the strongest evidence of HGT harbor genes directly involved in establishing or maintaining the mutualism with host plants. In both species, nucleotide diversity is 1.5–2.5 times greater on the plasmids than chromosomes. Interestingly, nucleotide diversity in S. meliloti but not S. medicae is highly structured along the chromosome – with mean diversity (θπ) on one half of the chromosome five times greater than mean diversity on the other half. Based on the ratio of plasmid to chromosome diversity, this appears to be due to severely reduced diversity on the chromosome half with less diversity, which is consistent with extensive hitchhiking along with a selective sweep. Frequency-spectrum based tests identified 82 genes with a signature of adaptive evolution in one species or another but none of the genes were identified in both species. Based upon available functional information, several genes identified as targets of selection are likely to alter the symbiosis with the host plant, making them attractive targets for further functional characterization.
Vyšlo v časopise:
Population Genomics of the Facultatively Mutualistic Bacteria and. PLoS Genet 8(8): e32767. doi:10.1371/journal.pgen.1002868
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1002868
Souhrn
The symbiosis between rhizobial bacteria and legume plants has served as a model for investigating the genetics of nitrogen fixation and the evolution of facultative mutualism. We used deep sequence coverage (>100×) to characterize genomic diversity at the nucleotide level among 12 Sinorhizobium medicae and 32 S. meliloti strains. Although these species are closely related and share host plants, based on the ratio of shared polymorphisms to fixed differences we found that horizontal gene transfer (HGT) between these species was confined almost exclusively to plasmid genes. Three multi-genic regions that show the strongest evidence of HGT harbor genes directly involved in establishing or maintaining the mutualism with host plants. In both species, nucleotide diversity is 1.5–2.5 times greater on the plasmids than chromosomes. Interestingly, nucleotide diversity in S. meliloti but not S. medicae is highly structured along the chromosome – with mean diversity (θπ) on one half of the chromosome five times greater than mean diversity on the other half. Based on the ratio of plasmid to chromosome diversity, this appears to be due to severely reduced diversity on the chromosome half with less diversity, which is consistent with extensive hitchhiking along with a selective sweep. Frequency-spectrum based tests identified 82 genes with a signature of adaptive evolution in one species or another but none of the genes were identified in both species. Based upon available functional information, several genes identified as targets of selection are likely to alter the symbiosis with the host plant, making them attractive targets for further functional characterization.
Zdroje
1. GilbertJA, DupontCL (2011) Microbial metagenomics: beyond the genome. Annu Rev Marine Sci 3: 347–371.
2. JaureguyF, LandraudL, PassetV, DiancourtL, FrapyE, et al. (2008) Phylogenetic and genomic diversity of human bacteremic Escherichia coli strains. BMC Genomics 9: 560.
3. TettelinH, MasignaniV, CieslewiczMJ, DonatiC, MediniD, et al. (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome.”. Proc Natl Acad Sci USA 102: 13950–13955.
4. LefébureT, StanhopeMJ (2007) Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition. Genome Biol 8: R71.
5. TianCF, ZhouYJ, ZhangYM, LiQQ, ZhangYZ, et al. (2012) Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. Proc Natl Acad Sci USA 109: 8629–8634.
6. TenaillonO, SkurnikD, PicardB, DenamurE (2010) The population genetics of commensal Escherichia coli. Nat Rev Microbiol 8: 207–217.
7. TouchonM, HoedeC, TenaillonO, BarbeV, BaeriswylS, et al. (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5: e1000344.
8. CroucherNJ, HarrisSR, FraserC, QuailMA, BurtonJ, et al. (2011) Rapid pneumococcal evolution in response to clinical interventions. Science 331: 430–434.
9. TakunoS, KadoT, SuginoRP, NakhlehL, InnanH (2012) Population genomics in b acteria: a case study of Staphylococcus aureus. Mol Biol and Evol 29: 797–809.
10. FalushD (2009) Toward the use of genomics to study microevolutionary change in bacteria. PLoS Genet 5: e1000627.
11. GruberN, GallowayJN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451: 293–296.
12. VanceCP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127: 390.
13. YoungND, DebelleF, OldroydGED, GeurtsR, CannonSB, et al. (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480: 520–524.
14. GibsonKE, KobayashiH, WalkerGC (2008) Molecular determinants of a symbiotic chronic infection. Annu Rev Genet 42: 413–441.
15. CooperJE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103: 1355–1365.
16. JonesKM, KobayashiH, DaviesBW, TagaME, WalkerGC (2007) How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model. Nat Rev Microbiol 5: 619–633.
17. BaillyX, OlivieriI, De MitaSÉ, Cleyet-MarelJC, BenaG (2006) Recombination and selection shape the molecular diversity pattern of nitrogen-fixing Sinorhizobium sp. associated to Medicago. Mol Ecol 15: 2719–2734.
18. FriesenML, MathiasA (2010) Mixed infections may promote diversification of mutualistic symbionts: why are there ineffective rhizobia? J Evol Biol 23: 323–334.
19. HeathKD, TiffinP (2009) Stabilizing mechanisms in a legume–rhizobium mutualism. Evolution 63: 652–662.
20. BaillyX, OlivieriI, BrunelB, Cleyet-MarelJ-C, BénaG (2007) Horizontal gene transfer and homologous recombination drive the evolution of the nitrogen-fixing symbionts of Medicago species. J Bacteriol 189: 5223–5236.
21. GalibertF, FinanTM, LongSR, PühlerA, AbolaP, et al. (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293: 668–672.
22. ReeveW, ChainP, O'HaraG, ArdleyJ, NandesenaK, et al. (2010) Complete genome sequence of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419. Standards in Genomic Sciences 2: 77.
23. KuhnS, StiensM, PühlerA, SchlüterA (2008) Prevalence of pSmeSM11a-like plasmids in indigenous Sinorhizobium meliloti strains isolated in the course of a field release experiment with genetically modified S. meliloti strains. FEMS Microbiol Ecol 63: 118–131.
24. MacLeanAM, FinanTM, SadowskyMJ (2007) Genomes of the symbiotic nitrogen-fixing bacteria of legumes. Plant Physiol 144: 615–622.
25. BaillyX, GiuntiniE, SextonMC, LowerRP, HarrisonPW, et al. (2011) Population genomics of Sinorhizobium medicae based on low-coverage sequencing of sympatric isolates. ISME J 5: 1722–1734.
26. BenaG, LyetA, HuguetT, OlivieriI (2005) Medicago – Sinorhizobium symbiotic specificity evolution and the geographic expansion of Medicago. J Evol Biol 18: 1547–1558.
27. RomeS, FernandezMP, BrunelB, NormandP, Cleyet-MarelJ-C (1996) Sinorhizobium medicae sp. nov., isolated from annual Medicago spp. Int J Syst Bacteriol 46: 972–980.
28. SilvaC, KanFL, Martínez-RomeroE (2007) Population genetic structure of Sinorhizobium meliloti and S. medicae isolated from nodules of Medicago spp. in Mexico. FEMS Microbiol Ecol 60: 477–489.
29. GiuntiniE, MengoniA, De FilippoC, CavalieriD, Aubin-HorthN, et al. (2005) Large-scale genetic variation of the symbiosis-required megaplasmid pSymA revealed by comparative genomic analysis of Sinorhizobium meliloti natural strains. BMC Genomics 6: 158.
30. ZengK, FuY-X, ShiS, WuC-I (2006) Statistical tests for detecting positive selection by utilizing high-frequency variants. Genetics 174: 1431–1439.
31. BarnettMJ, TomanCJ, FisherRF, LongSR (2004) A dual-genome symbiosis chip for coordinate study of signal exchange and development in a prokaryote–host interaction. Proc Natl Acad Sci USA 101: 16636–16641.
32. SullivanJT, PatrickHN, LowtherWL, ScottDB, RonsonCW (1995) Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci USA 92: 8985.
33. SunS, GuoH, XuJ (2006) Multiple gene genealogical analyses reveal both common and distinct population genetic patterns among replicons in the nitrogen-fixing bacterium Sinorhizobium meliloti. Microbiology 152: 3245–3259.
34. VinuesaP, SilvaaC, WernerbD, Martınez-RomeroaE (2005) Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phyl Evol 34: 29–54.
35. OchmanH, MoranNA (2001) Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292: 1096–1099.
36. MaticI, TaddeiF, RadmanM (1996) Genetic barriers among bacteria. Trends in Microbiology 4: 69–73.
37. van BerkumP, EliaP, EardlyBD (2006) Multilocus sequence typing as an approach for population analysis of Medicago-nodulating rhizobia. J Bacteriol 188: 5570–5577.
38. van BerkumP, BadriY, EliaP, AouaniME, EardlyBD (2007) Chromosomal and symbiotic relationships of rhizobia nodulating Medicago truncatula and M. laciniata. Appl Environ Microbiol 73: 7587–7604.
39. SmithJM, HaighJ (1974) The hitch-hiking effect of a favourable gene. Genet Research 23: 23–35.
40. CohanFM (2001) Bacterial species and speciation. Syst Biol 50: 513–524.
41. HeathKD (2010) Intergenomic epsistasis and coevolutionary constraint in plants and rhizobia. Evolution 64: 1446–1458.
42. BarnettMJ, FisherRF, JonesT, KompC, AbolaAP, et al. (2001) Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc Natl Acad Sci USA 98: 9883–9888.
43. FinanTM, WeidnerS, WongK, BuhrmesterJ, ChainP, et al. (2001) The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proc Nat Acad of Sci USA 98: 9889–9894.
44. StiensM, SchneikerS, KellerM, KuhnS, PühlerA, et al. (2006) Sequence analysis of the 144-kilobase accessory plasmid pSmeSM11a, isolated from a dominant Sinorhizobium meliloti strain identified during a long-term field release experiment. Appl Environ Microbiol 72: 3662–3672.
45. StiensM, SchneikerS, PühlerA, SchlüterA (2007) Sequence analysis of the 181-kb accessory plasmid pSmeSM11b, isolated from a dominant Sinorhizobium meliloti strain identified during a long-term field release experiment. FEMS Microbiol Lett 271: 297–309.
46. BarranLR, RitchotN, BromfieldESP (2001) Sinorhizobium meliloti plasmid pRm1132f replicates by a rolling-circle mechanism. J Bacteriol 183: 2704–2708.
47. WuTD, NacuS (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26: 873–881.
48. MillerNA, KingsmoreSF, FarmerA, LangleyRJ, MudgeJ, et al. (2008) Management of high-throughput DNA sequencing projects: Alpheus. J Comput Sci Syst Biol 1: 132–132.
49. VallenetD, EngelenS, MornicoD, CruveillerS, FleuryL, et al. (2009) MicroScope: a platform for microbial genome annotation and comparative genomics. Database (Oxford) 2009: bap021.
50. LarkinMA, BlackshieldsG, BrownNP, ChennaR, McGettiganPA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.
51. ThorntonK (2003) libsequence: a C++ class library for evolutionary genetic analysis. Bioinformatics 19: 2325–2327 doi:10.1093/bioinformatics/btg316.
52. TajimaF (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.
53. WattersonGA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7: 256–276.
54. KimuraM (1968) Evolutionary rate at the molecular level. Nature 217: 624–626.
55. FayJC, WuC-I (2000) Hitchhiking under positive Darwinian selection. Genetics 155: 1405–1413.
56. SaitouN, NeiM (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
57. FelsensteinJ (1989) PHYLIP – Phylogeny Inference Package (Version 3.2). Cladistics 5: 164.
58. FelsensteinJ, ChurchillGA (1996) A hidden markov model approach to variation among sites in rate of evolution. Mol Biol Evol 13: 93–104.
59. CapelaD, Barloy-HublerF, GouzyJ, BotheG, AmpeF, et al. (2001) Analysis of the Chromosome Sequence of the Legume Symbiont Sinorhizobium meliloti Strain 1021. Proc Nat. Acad Sci USA 98: 9877–9882.
60. R Development Core Team (2011) R: A language and environment for statistical computing. Vienna, Austria. http://www.R-project.org/.
61. SibleyCD, MacLellanSR, FinanTM (2006) The Sinorhizobium meliloti chromosomal origin of replication. Microbiology 152: 443–455.
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2012 Číslo 8
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Dissecting the Gene Network of Dietary Restriction to Identify Evolutionarily Conserved Pathways and New Functional Genes
- It's All in the Timing: Too Much E2F Is a Bad Thing
- Variation of Contributes to Dog Breed Skull Diversity
- The PARN Deadenylase Targets a Discrete Set of mRNAs for Decay and Regulates Cell Motility in Mouse Myoblasts