#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Metabolic effects of skeletal muscle-specific deletion of beta-arrestin-1 and -2 in mice


Autoři: Jaroslawna Meister aff001;  Derek B. J. Bone aff001;  Grzegorz Godlewski aff002;  Ziyi Liu aff002;  Regina J. Lee aff001;  Sergey A. Vishnivetskiy aff003;  Vsevolod V. Gurevich aff003;  Danielle Springer aff004;  George Kunos aff002;  Jürgen Wess aff001
Působiště autorů: Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States of America aff001;  Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States of America aff002;  Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America aff003;  Murine Phenotyping Core, National Heart, Lung, and Blood Institute, Bethesda, MD, United States of America aff004
Vyšlo v časopise: Metabolic effects of skeletal muscle-specific deletion of beta-arrestin-1 and -2 in mice. PLoS Genet 15(10): e32767. doi:10.1371/journal.pgen.1008424
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1008424

Souhrn

Type 2 diabetes (T2D) has become a major health problem worldwide. Skeletal muscle (SKM) is the key tissue for whole-body glucose disposal and utilization. New drugs aimed at improving insulin sensitivity of SKM would greatly expand available therapeutic options. β-arrestin-1 and -2 (Barr1 and Barr2, respectively) are two intracellular proteins best known for their ability to mediate the desensitization and internalization of G protein-coupled receptors (GPCRs). Recent studies suggest that Barr1 and Barr2 regulate several important metabolic functions including insulin release and hepatic glucose production. Since SKM expresses many GPCRs, including the metabolically important β2-adrenergic receptor, the goal of this study was to examine the potential roles of Barr1 and Barr2 in regulating SKM and whole-body glucose metabolism. Using SKM-specific knockout (KO) mouse lines, we showed that the loss of SKM Barr2, but not of SKM Barr1, resulted in mild improvements in glucose tolerance in diet-induced obese mice. SKM-specific Barr1- and Barr2-KO mice did not show any significant differences in exercise performance. However, lack of SKM Barr2 led to increased glycogen breakdown following a treadmill exercise challenge. Interestingly, mice that lacked both Barr1 and Barr2 in SKM showed no significant metabolic phenotypes. Thus, somewhat surprisingly, our data indicate that SKM β-arrestins play only rather subtle roles (SKM Barr2) in regulating whole-body glucose homeostasis and SKM insulin sensitivity.

Klíčová slova:

Insulin – Glucose metabolism – Mouse models – Obesity – Glucose – Blood sugar – Glycogens – Glucose tolerance


Zdroje

1. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81. Epub 2018/03/03. doi: 10.1016/j.diabres.2018.02.023 29496507.

2. DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes care. 2009;32 Suppl 2:S157–63. doi: 10.2337/dc09-S302 19875544; PubMed Central PMCID: PMC2811436.

3. Gonzalez-Muniesa P, Martinez-Gonzalez MA, Hu FB, Despres JP, Matsuzawa Y, Loos RJF, et al. Obesity. Nature reviews Disease primers. 2017;3:17034. Epub 2017/06/16. doi: 10.1038/nrdp.2017.34 28617414.

4. Kusminski CM, Bickel PE, Scherer PE. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov. 2016;15(9):639–60. Epub 2016/06/04. doi: 10.1038/nrd.2016.75 27256476.

5. Thiebaud D, Jacot E, DeFronzo RA, Maeder E, Jequier E, Felber JP. The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes. 1982;31(11):957–63. Epub 1982/11/01. doi: 10.2337/diacare.31.11.957 6757014.

6. Coureuil M, Lecuyer H, Scott MG, Boularan C, Enslen H, Soyer M, et al. Meningococcus Hijacks a beta2-adrenoceptor/beta-Arrestin pathway to cross brain microvasculature endothelium. Cell. 2010;143(7):1149–60. Epub 2010/12/25. doi: 10.1016/j.cell.2010.11.035 21183077.

7. Luan B, Zhao J, Wu H, Duan B, Shu G, Wang X, et al. Deficiency of a beta-arrestin-2 signal complex contributes to insulin resistance. Nature. 2009;457(7233):1146–9. doi: 10.1038/nature07617 19122674.

8. Zhuang LN, Hu WX, Zhang ML, Xin SM, Jia WP, Zhao J, et al. Beta-arrestin-1 protein represses diet-induced obesity. J Biol Chem. 2011;286(32):28396–402. doi: 10.1074/jbc.M111.223206 21543334; PubMed Central PMCID: PMC3151082.

9. Wang Y, Jin L, Song Y, Zhang M, Shan D, Liu Y, et al. beta-arrestin 2 mediates cardiac ischemia-reperfusion injury via inhibiting GPCR-independent cell survival signalling. Cardiovasc Res. 2017;113(13):1615–26. Epub 2017/10/11. doi: 10.1093/cvr/cvx147 29016703.

10. Zhu L, Rossi M, Cui Y, Lee RJ, Sakamoto W, Perry NA, et al. Hepatic beta-arrestin 2 is essential for maintaining euglycemia. J Clin Invest. 2017;127(8):2941–5. Epub 2017/06/27. doi: 10.1172/JCI92913 28650340; PubMed Central PMCID: PMC5531395.

11. Zhu L, Almaca J, Dadi PK, Hong H, Sakamoto W, Rossi M, et al. beta-arrestin-2 is an essential regulator of pancreatic beta-cell function under physiological and pathophysiological conditions. Nat Commun. 2017;8:14295. Epub 2017/02/02. doi: 10.1038/ncomms14295 28145434; PubMed Central PMCID: PMC5296650.

12. Ravier MA, Leduc M, Richard J, Linck N, Varrault A, Pirot N, et al. beta-Arrestin2 plays a key role in the modulation of the pancreatic beta cell mass in mice. Diabetologia. 2014;57(3):532–41. Epub 2013/12/10. doi: 10.1007/s00125-013-3130-7 24317793.

13. Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 2002;3(9):639–50. Epub 2002/09/05. doi: 10.1038/nrm908 12209124.

14. Srivastava A, Gupta B, Gupta C, Shukla AK. Emerging Functional Divergence of beta-Arrestin Isoforms in GPCR Function. Trends Endocrinol Metab. 2015;26(11):628–42. Epub 2015/10/17. doi: 10.1016/j.tem.2015.09.001 26471844.

15. Lee AD, Hansen PA, Schluter J, Gulve EA, Gao J, Holloszy JO. Effects of epinephrine on insulin-stimulated glucose uptake and GLUT-4 phosphorylation in muscle. Am J Physiol. 1997;273(3 Pt 1):C1082–7. Epub 1997/10/08. doi: 10.1152/ajpcell.1997.273.3.C1082 9316430.

16. Opie LH. Effect of beta-adrenergic blockade on biochemical and metabolic response to exercise. Am J Cardiol. 1985;55(10):95D–100D. Epub 1985/04/26. doi: 10.1016/0002-9149(85)91062-8 2859797.

17. Schmid CL, Bohn LM. Physiological and pharmacological implications of beta-arrestin regulation. Pharmacol Ther. 2009;121(3):285–93. Epub 2008/12/23. doi: 10.1016/j.pharmthera.2008.11.005 19100766; PubMed Central PMCID: PMC2656564.

18. Luttrell LM, Gesty-Palmer D. Beyond desensitization: physiological relevance of arrestin-dependent signaling. Pharmacol Rev. 2010;62(2):305–30. Epub 2010/04/30. doi: 10.1124/pr.109.002436 20427692; PubMed Central PMCID: PMC2879915.

19. Whalen EJ, Rajagopal S, Lefkowitz RJ. Therapeutic potential of beta-arrestin- and G protein-biased agonists. Trends Mol Med. 2011;17(3):126–39. Epub 2010/12/25. doi: 10.1016/j.molmed.2010.11.004 21183406; PubMed Central PMCID: PMC3628754.

20. Kenakin T, Christopoulos A. Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov. 2013;12(3):205–16. Epub 2013/02/16. doi: 10.1038/nrd3954 23411724.

21. Zhuang LN, Hu WX, Xin SM, Zhao J, Pei G. Beta-arrestin-1 protein represses adipogenesis and inflammatory responses through its interaction with peroxisome proliferator-activated receptor-gamma (PPARgamma). J Biol Chem. 2011;286(32):28403–13. Epub 2011/06/28. doi: 10.1074/jbc.M111.256099 21700709; PubMed Central PMCID: PMC3151083.

22. Pydi SP, Jain S, Tung W, Cui Y, Zhu L, Sakamoto W, et al. Adipocyte beta-arrestin-2 is essential for maintaining whole body glucose and energy homeostasis. Nat Commun. 2019;10(1):2936. Epub 2019/07/05. doi: 10.1038/s41467-019-11003-4 31270323; PubMed Central PMCID: PMC6610117.

23. Barella LF, Rossi M, Zhu L, Cui Y, Mei FC, Cheng X, et al. beta-Cell-intrinsic beta-arrestin 1 signaling enhances sulfonylurea-induced insulin secretion. J Clin Invest. 2019;130. Epub 2019/06/12. doi: 10.1172/JCI126309 31184597.

24. Kim J, Grotegut CA, Wisler JW, Li T, Mao L, Chen M, et al. beta-arrestin 1 regulates beta2-adrenergic receptor-mediated skeletal muscle hypertrophy and contractility. Skeletal muscle. 2018;8(1):39. Epub 2018/12/29. doi: 10.1186/s13395-018-0184-8 30591079; PubMed Central PMCID: PMC6309084.

25. Schuler M, Ali F, Metzger E, Chambon P, Metzger D. Temporally controlled targeted somatic mutagenesis in skeletal muscles of the mouse. Genesis (New York, NY: 2000). 2005;41(4):165–70. Epub 2005/03/25. doi: 10.1002/gene.20107 15789425.

26. Pierce KL, Lefkowitz RJ. Classical and new roles of beta-arrestins in the regulation of G-protein-coupled receptors. Nat Rev Neurosci. 2001;2(10):727–33. Epub 2001/10/05. doi: 10.1038/35094577 11584310.

27. Regard JB, Sato IT, Coughlin SR. Anatomical profiling of G protein-coupled receptor expression. Cell. 2008;135(3):561–71. Epub 2008/11/06. doi: 10.1016/j.cell.2008.08.040 18984166; PubMed Central PMCID: PMC2590943.

28. Bruno NE, Kelly KA, Hawkins R, Bramah-Lawani M, Amelio AL, Nwachukwu JC, et al. Creb coactivators direct anabolic responses and enhance performance of skeletal muscle. EMBO J. 2014;33(9):1027–43. Epub 2014/03/29. doi: 10.1002/embj.201386145 24674967; PubMed Central PMCID: PMC4193935.

29. Katz A, Broberg S, Sahlin K, Wahren J. Leg glucose uptake during maximal dynamic exercise in humans. Am J Physiol. 1986;251(1 Pt 1):E65–70. Epub 1986/07/01. doi: 10.1152/ajpendo.1986.251.1.E65 3728665.

30. Sylow L, Kleinert M, Richter EA, Jensen TE. Exercise-stimulated glucose uptake—regulation and implications for glycaemic control. Nat Rev Endocrinol. 2017;13(3):133–48. Epub 2016/11/04. doi: 10.1038/nrendo.2016.162 27739515.

31. Sato M, Dehvari N, Oberg AI, Dallner OS, Sandstrom AL, Olsen JM, et al. Improving type 2 diabetes through a distinct adrenergic signaling pathway involving mTORC2 that mediates glucose uptake in skeletal muscle. Diabetes. 2014;63(12):4115–29. Epub 2014/07/11. doi: 10.2337/db13-1860 25008179.

32. Nevzorova J, Evans BA, Bengtsson T, Summers RJ. Multiple signalling pathways involved in beta2-adrenoceptor-mediated glucose uptake in rat skeletal muscle cells. Br J Pharmacol. 2006;147(4):446–54. Epub 2006/01/18. doi: 10.1038/sj.bjp.0706626 16415914; PubMed Central PMCID: PMC1616992.

33. Elayan H, Milic M, Sun P, Gharaibeh M, Ziegler MG. Chronic beta2 adrenergic agonist, but not exercise, improves glucose handling in older type 2 diabetic mice. Cell Mol Neurobiol. 2012;32(5):871–7. Epub 2012/03/17. doi: 10.1007/s10571-012-9819-1 22422105.

34. Ngala RA, O'Dowd J, Wang SJ, Stocker C, Cawthorne MA, Arch JR. Beta2-adrenoceptors and non-beta-adrenoceptors mediate effects of BRL37344 and clenbuterol on glucose uptake in soleus muscle: studies using knockout mice. Br J Pharmacol. 2009;158(7):1676–82. Epub 2009/11/17. doi: 10.1111/j.1476-5381.2009.00472.x 19912225; PubMed Central PMCID: PMC2801208.

35. Castle A, Yaspelkis BB 3rd, Kuo CH, Ivy JL. Attenuation of insulin resistance by chronic beta2-adrenergic agonist treatment possible muscle specific contributions. Life Sci. 2001;69(5):599–611. Epub 2001/08/21. doi: 10.1016/s0024-3205(01)01149-3 11510954.

36. Bowe JE, Franklin ZJ, Hauge-Evans AC, King AJ, Persaud SJ, Jones PM. Metabolic phenotyping guidelines: assessing glucose homeostasis in rodent models. J Endocrinol. 2014;222(3):G13–25. Epub 2014/07/25. doi: 10.1530/JOE-14-0182 25056117.

37. Ayala JE, Bracy DP, McGuinness OP, Wasserman DH. Considerations in the design of hyperinsulinemic-euglycemic clamps in the conscious mouse. Diabetes. 2006;55(2):390–7. Epub 2006/01/31. doi: 10.2337/diabetes.55.02.06.db05-0686 16443772.

38. Wu M, Falasca M, Blough ER. Akt/protein kinase B in skeletal muscle physiology and pathology. Journal of cellular physiology. 2011;226(1):29–36. Epub 2010/07/31. doi: 10.1002/jcp.22353 20672327.

39. Urs NM, Gee SM, Pack TF, McCorvy JD, Evron T, Snyder JC, et al. Distinct cortical and striatal actions of a beta-arrestin-biased dopamine D2 receptor ligand reveal unique antipsychotic-like properties. Proc Natl Acad Sci U S A. 2016;113(50):E8178–e86. Epub 2016/12/03. doi: 10.1073/pnas.1614347113 27911814; PubMed Central PMCID: PMC5167191.

40. Perry NA, Kaoud TS, Ortega OO, Kaya AI, Marcus DJ, Pleinis JM, et al. Arrestin-3 scaffolding of the JNK3 cascade suggests a mechanism for signal amplification. Proc Natl Acad Sci U S A. 2019;116(3):810–5. Epub 2018/12/29. doi: 10.1073/pnas.1819230116 30591558; PubMed Central PMCID: PMC6338856.

41. Ayala JE, Bracy DP, Malabanan C, James FD, Ansari T, Fueger PT, et al. Hyperinsulinemic-euglycemic clamps in conscious, unrestrained mice. J Vis Exp. 2011;(57). Epub 2011/12/01. doi: 10.3791/3188 22126863; PubMed Central PMCID: PMC3308587.

42. Godlewski G, Jourdan T, Szanda G, Tam J, Cinar R, Harvey-White J, et al. Mice lacking GPR3 receptors display late-onset obese phenotype due to impaired thermogenic function in brown adipose tissue. Sci Rep. 2015;5:14953. Epub 2015/10/13. doi: 10.1038/srep14953 26455425; PubMed Central PMCID: PMC4601089.

43. Steele R, Wall JS, De Bodo RC, Altszuler N. Measurement of size and turnover rate of body glucose pool by the isotope dilution method. Am J Physiol. 1956;187(1):15–24. Epub 1956/10/01. doi: 10.1152/ajplegacy.1956.187.1.15 13362583.

44. Youn JH, Kim JK, Buchanan TA. Time courses of changes in hepatic and skeletal muscle insulin action and GLUT4 protein in skeletal muscle after STZ injection. Diabetes. 1994;43(4):564–71. Epub 1994/04/01. doi: 10.2337/diab.43.4.564 8138062.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#