#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Differential Requirements for the RAD51 Paralogs in Genome Repair and Maintenance in Human Cells


Autoři: Edwige B. Garcin aff001;  Stéphanie Gon aff001;  Meghan R. Sullivan aff002;  Gregory J. Brunette aff002;  Anne De Cian aff003;  Jean-Paul Concordet aff003;  Carine Giovannangeli aff003;  Wilhelm G. Dirks aff004;  Sonja Eberth aff004;  Kara A. Bernstein aff002;  Rohit Prakash aff005;  Maria Jasin aff005;  Mauro Modesti aff001
Působiště autorů: Cancer Research Center of Marseille; CNRS; Inserm; Institut Paoli-Calmettes; Aix-Marseille Université, Marseille, France aff001;  Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America aff002;  Museum National d'Histoire Naturelle, Inserm U1154, CNRS UMR 7196, Sorbonne Universités, Paris, France aff003;  Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German, Collection of Microorganisms and Cell Cultures, Braunschweig, Germany aff004;  Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America aff005
Vyšlo v časopise: Differential Requirements for the RAD51 Paralogs in Genome Repair and Maintenance in Human Cells. PLoS Genet 15(10): e32767. doi:10.1371/journal.pgen.1008355
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1008355

Souhrn

Deficiency in several of the classical human RAD51 paralogs [RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3] is associated with cancer predisposition and Fanconi anemia. To investigate their functions, isogenic disruption mutants for each were generated in non-transformed MCF10A mammary epithelial cells and in transformed U2OS and HEK293 cells. In U2OS and HEK293 cells, viable ablated clones were readily isolated for each RAD51 paralog; in contrast, with the exception of RAD51B, RAD51 paralogs are cell-essential in MCF10A cells. Underlining their importance for genomic stability, mutant cell lines display variable growth defects, impaired sister chromatid recombination, reduced levels of stable RAD51 nuclear foci, and hyper-sensitivity to mitomycin C and olaparib. Altogether these observations underscore the contributions of RAD51 paralogs in diverse DNA repair processes, and demonstrate essential differences in different cell types. Finally, this study will provide useful reagents to analyze patient-derived mutations and to investigate mechanisms of chemotherapeutic resistance deployed by cancers.

Klíčová slova:

Genetic loci – Polymerase chain reaction – Analysis of variance – Plasmid construction – Complement system – Guide RNA – Cell disruption


Zdroje

1. Lin Z, Kong H, Nei M, Ma H. Origins and evolution of the recA/RAD51 gene family: evidence for ancient gene duplication and endosymbiotic gene transfer. Proc Natl Acad Sci U S A. 2006;103: 10328–10333. doi: 10.1073/pnas.0604232103 16798872

2. Bianco PR, Tracy RB, Kowalczykowski SC. DNA strand exchange proteins: a biochemical and physical comparison. Front Biosci. 1998;3: D570–603. Available: http://www.ncbi.nlm.nih.gov/pubmed/9632377 doi: 10.2741/a304 9632377

3. Kolinjivadi AM, Sannino V, de Antoni A, Técher H, Baldi G, Costanzo V. Moonlighting at replication forks—a new life for homologous recombination proteins BRCA1, BRCA2 and RAD51. FEBS Lett. 2017;591: 1083–1100. doi: 10.1002/1873-3468.12556 28079255

4. Thacker J. The role of homologous recombination processes in the repair of severe forms of DNA damage in mammalian cells. Biochimie. 1999;81: 77–85. Available: http://www.ncbi.nlm.nih.gov/pubmed/10214913 doi: 10.1016/s0300-9084(99)80041-8 10214913

5. Amunugama R, Groden J, Fishel R. The HsRAD51B-HsRAD51C stabilizes the HsRAD51 nucleoprotein filament. DNA Repair. 2013;12: 723–732. doi: 10.1016/j.dnarep.2013.05.005 23810717

6. Gaines WA, Godin SK, Kabbinavar FF, Rao T, VanDemark AP, Sung P, et al. Promotion of presynaptic filament assembly by the ensemble of S. cerevisiae Rad51 paralogues with Rad52. Nat Commun. 2015; 6: 7834. doi: 10.1038/ncomms8834 26215801

7. Lio YC, Mazin A V, Kowalczykowski SC, Chen DJ. Complex formation by the human Rad51B and Rad51C DNA repair proteins and their activities in vitro. J Biol Chem. 2003;278: 2469–2478. doi: 10.1074/jbc.M211038200 12427746

8. Masson JY, Stasiak AZ, Stasiak A, Benson FE, West SC. Complex formation by the human RAD51C and XRCC3 recombination repair proteins. Proc Natl Acad Sci U S A. 2001;98: 8440–8446. doi: 10.1073/pnas.111005698 11459987

9. Sigurdsson S, Van Komen S, Bussen W, Schild D, Albala JS, Sung P. Mediator function of the human Rad51B-Rad51C complex in Rad51/RPA-catalyzed DNA strand exchange. Genes Dev. 2001;15: 3308–3318. doi: 10.1101/gad.935501 11751636

10. Sung P. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev. 1997; 11: 1111–1121. doi: 10.1101/gad.11.9.1111 9159392

11. Taylor MR, Špírek M, Chaurasiya KR, Ward JD, Carzaniga R, Yu X, et al. Rad51 Paralogs Remodel Pre-synaptic Rad51 Filaments to Stimulate Homologous Recombination. Cell. 2015;162: 271–286. doi: 10.1016/j.cell.2015.06.015 26186187

12. Taylor MR, Špírek M, Jian Ma C, Carzaniga R, Takaki T, Collinson LM, et al. A Polar and Nucleotide-Dependent Mechanism of Action for RAD51 Paralogs in RAD51 Filament Remodeling. Mol Cell. 2016/11/17. 2016;64: 926–939. doi: 10.1016/j.molcel.2016.10.020 27867009

13. Yokoyama H, Sarai N, Kagawa W, Enomoto R, Shibata T, Kurumizaka H, et al. Preferential binding to branched DNA strands and strand-annealing activity of the human Rad51B, Rad51C, Rad51D and Xrcc2 protein complex. Nucleic Acids Res. 2004;32: 2556–2565. doi: 10.1093/nar/gkh578 15141025

14. Albala JS, Thelen MP, Prange C, Fan W, Christensen M, Thompson LH, et al. Identification of a Novel HumanRAD51Homolog,RAD51B. Genomics. 2002;46: 476–479. doi: 10.1006/geno.1997.5062 9441753

15. Cartwright R, Tambini CE, Simpson PJ, Thacker J. The XRCC2 DNA repair gene from human and mouse encodes a novel member of the recA/RAD51 family. Nucleic Acids Res. 1998;26: 3084–3089. Available: http://www.ncbi.nlm.nih.gov/pubmed/9628903 doi: 10.1093/nar/26.13.3084 9628903

16. Dosanjh MK, Collins DW, Fan W, Lennon GG, Albala JS, Shen Z, et al. Isolation and characterization of RAD51C, a new human member of the RAD51 family of related genes. Nucleic Acids Res. 1998;26: 1179–1184. doi: 10.1093/nar/26.5.1179 9469824

17. Pittman DL, Weinberg LR, Schimenti JC. Identification, characterization, and genetic mapping of Rad51d, a new mouse and human RAD51/RecA-related gene. Genomics. 1998;49: 103–111. doi: 10.1006/geno.1998.5226 9570954

18. Tebbs RS, Zhao Y, Tucker JD, Scheerer JB, Siciliano MJ, Hwang M, et al. Correction of chromosomal instability and sensitivity to diverse mutagens by a cloned cDNA of the XRCC3 DNA repair gene. Proc Natl Acad Sci U S A. 1995;92: 6354–6358. Available: https://www.ncbi.nlm.nih.gov/pubmed/7603995 doi: 10.1073/pnas.92.14.6354 7603995

19. Braybrooke JP, Spink KG, Thacker J, Hickson ID. The RAD51 family member, RAD51L3, is a DNA-stimulated ATPase that forms a complex with XRCC2. J Biol Chem. 2000;275: 29100–29106. doi: 10.1074/jbc.M002075200 10871607

20. Liu N. Involvement of Rad51C in two distinct protein complexes of Rad51 paralogs in human cells. Nucleic Acids Res. 2002;30: 1009–1015. doi: 10.1093/nar/30.4.1009 11842113

21. Masson JY, Tarsounas MC, Stasiak AZ, Stasiak A, Shah R, McIlwraith MJ, et al. Identification and purification of two distinct complexes containing the five RAD51 paralogs. Genes Dev. 2001;15: 3296–3307. doi: 10.1101/gad.947001 11751635

22. Miller KA, Yoshikawa DM, McConnell IR, Clark R, Schild D, Albala JS. RAD51C interacts with RAD51B and is central to a larger protein complex in vivo exclusive of RAD51. J Biol Chem. 2002;277: 8406–8411. doi: 10.1074/jbc.M108306200 11744692

23. Schild D, Lio YC, Collins DW, Tsomondo T, Chen DJ. Evidence for simultaneous protein interactions between human Rad51 paralogs. J Biol Chem. 2000;275: 16443–16449. doi: 10.1074/jbc.M001473200 10749867

24. Wiese C, Hinz JM, Tebbs RS, Nham PB, Urbin SS, Collins DW, et al. Disparate requirements for the Walker A and B ATPase motifs of human RAD51D in homologous recombination. Nucleic Acids Res. 2006;34: 2833–2843. doi: 10.1093/nar/gkl366 16717288

25. Yonetani Y, Hochegger H, Sonoda E, Shinya S, Yoshikawa H, Takeda S, et al. Differential and collaborative actions of Rad51 paralog proteins in cellular response to DNA damage. Nucleic Acids Res. 2005;33: 4544–4552. doi: 10.1093/nar/gki766 16093548

26. Liu T, Wan L, Wu Y, Chen J, Huang J. hSWS1·SWSAP1 is an evolutionarily conserved complex required for efficient homologous recombination repair. J Biol Chem. 2011/09/29. 2011;286: 41758–41766. doi: 10.1074/jbc.M111.271080 21965664

27. Martino J, Bernstein KA. The Shu complex is a conserved regulator of homologous recombination. Lisby M, editor. FEMS Yeast Res. 2016;16: fow073. doi: 10.1093/femsyr/fow073 27589940

28. Abreu CM, Prakash R, Romanienko PJ, Roig I, Keeney S, Jasin M. Shu complex SWS1-SWSAP1 promotes early steps in mouse meiotic recombination. Nat Commun. 2018; doi: 10.1038/s41467-018-06384-x 30305635

29. Deans B, Griffin CS, Maconochie M, Thacker J. Xrcc2 is required for genetic stability, embryonic neurogenesis and viability in mice. EMBO J. 2000;19: 6675–6685. doi: 10.1093/emboj/19.24.6675 11118202

30. Pittman DL, Schimenti JC. Midgestation lethality in mice deficient for the RecA-related gene, Rad51d/Rad51l3. Genesis. 2000;26: 167–173. 10705376

31. Shu Z, Smith S, Wang L, Rice MC, Kmiec EB. Disruption of muREC2/RAD51L1 in mice results in early embryonic lethality which can Be partially rescued in a p53(-/-) background. Mol Cell Biol. 1999;19: 8686–8693. Available: http://www.ncbi.nlm.nih.gov/pubmed/10567591 doi: 10.1128/mcb.19.12.8686 10567591

32. Smeenk G, de Groot AJ, Romeijn RJ, van Buul PP, Zdzienicka MZ, Mullenders LH, et al. Rad51C is essential for embryonic development and haploinsufficiency causes increased DNA damage sensitivity and genomic instability. Mutat Res. 2010;689: 50–58. doi: 10.1016/j.mrfmmm.2010.05.001 20471405

33. Prakash R, Zhang Y, Feng W, Jasin M. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol. 2015;7: a016600. doi: 10.1101/cshperspect.a016600 25833843

34. Adam J, Deans B, Thacker J. A role for Xrcc2 in the early stages of mouse development. DNA Repair (Amst). 2007;6: 224–234. doi: 10.1016/j.dnarep.2006.10.024 17116431

35. Takata M, Sasaki MS, Tachiiri S, Fukushima T, Sonoda E, Schild D, et al. Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol Cell Biol. 2001;21: 2858–2866. doi: 10.1128/MCB.21.8.2858-2866.2001 11283264

36. Tambini CE, George AM, Rommens JM, Tsui LC, Scherer SW, Thacker J. The XRCC2 DNA repair gene: identification of a positional candidate. Genomics. 1997;41: 84–92. doi: 10.1006/geno.1997.4636 9126486

37. Bishop DK, Ear U, Bhattacharyya A, Calderone C, Beckett M, Weichselbaum RR, et al. Xrcc3 Is Required for Assembly of Rad51 Complexes in Vivo. J Biol Chem. 1998;273: 21482–21488. doi: 10.1074/jbc.273.34.21482 9705276

38. French CA, Masson JY, Griffin CS, O’Regan P, West SC, Thacker J. Role of mammalian RAD51L2 (RAD51C) in recombination and genetic stability. J Biol Chem. 2002;277: 19322–19330. doi: 10.1074/jbc.M201402200 11912211

39. Godthelp BC. Mammalian Rad51C contributes to DNA cross-link resistance, sister chromatid cohesion and genomic stability. Nucleic Acids Res. 2002;30: 2172–2182. doi: 10.1093/nar/30.10.2172 12000837

40. Hinz JM, Tebbs RS, Wilson PF, Nham PB, Salazar EP, Nagasawa H, et al. Repression of mutagenesis by Rad51D-mediated homologous recombination. Nucleic Acids Res. 2006;34: 1358–1368. doi: 10.1093/nar/gkl020 16522646

41. Johnson RD, Liu N, Jasin M. Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Nature. 1999;401: 397–399. doi: 10.1038/43932 10517641

42. Liu N, Lamerdin JE, Tebbs RS, Schild D, Tucker JD, Shen MR, et al. XRCC2 and XRCC3, New Human Rad51-Family Members, Promote Chromosome Stability and Protect against DNA Cross-Links and Other Damages. Mol Cell. 1998;1: 783–793. doi: 10.1016/s1097-2765(00)80078-7 9660962

43. Pierce AJ, Johnson RD, Thompson LH, Jasin M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 1999;13: 2633–2638. doi: 10.1101/gad.13.20.2633 10541549

44. Takata M, Sasaki MS, Sonoda E, Fukushima T, Morrison C, Albala JS, et al. The Rad51 paralog Rad51B promotes homologous recombinational repair. Mol Cell Biol. 2000;20: 6476–6482. Available: http://www.ncbi.nlm.nih.gov/pubmed/10938124 doi: 10.1128/mcb.20.17.6476-6482.2000 10938124

45. Griffin CS, Simpson PJ, Wilson CR, Thacker J. Mammalian recombination-repair genes XRCC2 and XRCC3 promote correct chromosome segregation. Nat Cell Biol. 2000;2: 757–761. doi: 10.1038/35036399 11025669

46. Katsura M, Tsuruga T, Date O, Yoshihara T, Ishida M, Tomoda Y, et al. The ATR-Chk1 pathway plays a role in the generation of centrosome aberrations induced by Rad51C dysfunction. Nucleic Acids Res. 2009;37: 3959–3968. doi: 10.1093/nar/gkp262 19403737

47. Rodrigue A, Lafrance M, Gauthier MC, McDonald D, Hendzel M, West SC, et al. Interplay between human DNA repair proteins at a unique double-strand break in vivo. EMBO J. 2006;25: 222–231. doi: 10.1038/sj.emboj.7600914 16395335

48. Smiraldo PG, Gruver AM, Osborn JC, Pittman DL. Extensive chromosomal instability in Rad51d-deficient mouse cells. Cancer Res. 2005;65: 2089–2096. doi: 10.1158/0008-5472.CAN-04-2079 15781618

49. Somyajit K, Saxena S, Babu S, Mishra A, Nagaraju G. Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart. Nucleic Acids Res. 2015;43: 9835–55. doi: 10.1093/nar/gkv880 26354865

50. Sung P, Krejci L, Van Komen S, Sehorn MG. Rad51 recombinase and recombination mediators. J Biol Chem. 2003/08/11. 2003;278: 42729–42732. doi: 10.1074/jbc.R300027200 12912992

51. Yoshihara T, Ishida M, Kinomura A, Katsura M, Tsuruga T, Tashiro S, et al. XRCC3 deficiency results in a defect in recombination and increased endoreduplication in human cells. EMBO J. 2004/01/29. 2004;23: 670–680. doi: 10.1038/sj.emboj.7600087 14749735

52. Saxena S, Somyajit K, Nagaraju G. XRCC2 Regulates Replication Fork Progression during dNTP Alterations. Cell Rep. 2018;25: 3273–3282.e6. doi: 10.1016/j.celrep.2018.11.085 30566856

53. Badie S, Liao C, Thanasoula M, Barber P, Hill MA, Tarsounas M. RAD51C facilitates checkpoint signaling by promoting CHK2 phosphorylation. J Cell Biol. 2009;185: 587–600. doi: 10.1083/jcb.200811079 19451272

54. Cui X, Brenneman M, Meyne J, Oshimura M, Goodwin EH, Chen DJ. The XRCC2 and XRCC3 repair genes are required for chromosome stability in mammalian cells. Mutat Res. 1999;434: 75–88. Available: http://www.ncbi.nlm.nih.gov/pubmed/10422536 doi: 10.1016/s0921-8777(99)00010-5 10422536

55. Date O, Katsura M, Ishida M, Yoshihara T, Kinomura A, Sueda T, et al. Haploinsufficiency of RAD51B Causes Centrosome Fragmentation and Aneuploidy in Human Cells. Cancer Res. 2006;66: 6018–6024. doi: 10.1158/0008-5472.CAN-05-2803 16778173

56. Deans B, Griffin CS, O’Regan P, Jasin M, Thacker J. Homologous Recombination Deficiency Leads to Profound Genetic Instability in Cells Derived from Xrcc2-Knockout Mice. Cancer Res. 2003;63: 8181–8187. 14678973

57. Chun J, Buechelmaier ES, Powell SN. Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway. Mol Cell Biol. 2013;33: 387–395. doi: 10.1128/MCB.00465-12 23149936

58. Jensen RB, Ozes A, Kim T, Estep A, Kowalczykowski SC. BRCA2 is epistatic to the RAD51 paralogs in response to DNA damage. DNA Repair. 2013;12: 306–311. doi: 10.1016/j.dnarep.2012.12.007 23384538

59. Roy R, Chun J, Powell SN. BRCA1 and BRCA2: Different roles in a common pathway of genome protection. Nature Reviews Cancer. 2012. pp. 68–78. doi: 10.1038/nrc3181 22193408

60. Rodrigue A, Coulombe Y, Jacquet K, Gagné JP, Roques C, Gobeil S, et al. The RAD51 paralogs ensure cellular protection against mitotic defects and aneuploidy. J Cell Sci. 2013;126: 348–359. doi: 10.1242/jcs.114595 23108668

61. Lio YC, Schild D, Brenneman MA, Redpath JL, Chen DJ. Human Rad51C deficiency destabilizes XRCC3, impairs recombination, and radiosensitizes S/G2-phase cells. J Biol Chem. 2004;279: 42313–42320. doi: 10.1074/jbc.M405212200 15292210

62. Somyajit K, Basavaraju S, Scully R, Nagaraju G. ATM- and ATR-Mediated Phosphorylation of XRCC3 Regulates DNA Double-Strand Break-Induced Checkpoint Activation and Repair. Mol Cell Biol. 2013; doi: 10.1128/mcb.01521-12 23438602

63. Compton SA, Choi JH, Cesare AJ, Ozgür S, Griffith JD. Xrcc3 and Nbs1 are required for the production of extrachromosomal telomeric circles in human alternative lengthening of telomere cells. Cancer Res. 2007;67: 1513–1519. doi: 10.1158/0008-5472.CAN-06-3672 17308089

64. Tarsounas M, West SC. Recombination at mammalian telomeres: an alternative mechanism for telomere protection and elongation. Cell Cycle. 2005;4: 672–674. Available: http://www.ncbi.nlm.nih.gov/pubmed/15846103 doi: 10.4161/cc.4.5.1689 15846103

65. Nagaraju G, Odate S, Xie A, Scully R. Differential regulation of short- and long-tract gene conversion between sister chromatids by Rad51C. Mol Cell Biol. 2006;26: 8075–8086. doi: 10.1128/MCB.01235-06 16954385

66. Nagaraju G, Hartlerode A, Kwok A, Chandramouly G, Scully R. XRCC2 and XRCC3 regulate the balance between short- and long-tract gene conversions between sister chromatids. Mol Cell Biol. 2009;29: 4283–4294. doi: 10.1128/MCB.01406-08 19470754

67. Puget N, Knowlton M, Scully R. Molecular analysis of sister chromatid recombination in mammalian cells. DNA Repair. 2005;4: 149–161. doi: 10.1016/j.dnarep.2004.08.010 15590323

68. Akbari MR, Tonin P, Foulkes WD, Ghadirian P, Tischkowitz M, Narod SA. RAD51C germline mutations in breast and ovarian cancer patients. Breast Cancer Res. 2010/08/19. 2010;12: 404. doi: 10.1186/bcr2619 20723205

69. Golmard L, Caux-Moncoutier V, Davy G, Al Ageeli E, Poirot B, Tirapo C, et al. Germline mutation in the RAD51B gene confers predisposition to breast cancer. BMC Cancer. 2013/10/19. 2013;13: 484. doi: 10.1186/1471-2407-13-484 24139550

70. Golmard L, Castéra L, Krieger S, Moncoutier V, Abidallah K, Tenreiro H, et al. Contribution of germline deleterious variants in the RAD51 paralogs to breast and ovarian cancers /631/208/68 /631/67/1347 article. Eur J Hum Genet. 2017; doi: 10.1038/s41431-017-0021-2 29255180

71. Loveday C, Turnbull C, Ramsay E, Hughes D, Ruark E, Frankum JR, et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat Genet. 2011;43: 879–882. doi: 10.1038/ng.893 21822267

72. Loveday C, Turnbull C, Ruark E, Xicola RMM, Ramsay E, Hughes D, et al. Germline RAD51C mutations confer susceptibility to ovarian cancer. Nat Genet. 2012/04/26. 2012;44: 475–476. doi: 10.1038/ng.2224 22538716

73. Osorio A, Endt D, Fernández F, Eirich K, de la Hoya M, Schmutzler R, et al. Predominance of pathogenic missense variants in the RAD51C gene occurring in breast and ovarian cancer families. Hum Mol Genet. 2012;21: 2889–2898. doi: 10.1093/hmg/dds115 22451500

74. Orr N, Lemnrau A, Cooke R, Fletcher O, Tomczyk K, Jones M, et al. Genome-wide association study identifies a common variant in RAD51B associated with male breast cancer risk. Nat Genet. 2012;44: 1182–1184. doi: 10.1038/ng.2417 23001122

75. Park DJ, Lesueur F, Nguyen-Dumont T, Pertesi M, Odefrey F, Hammet F, et al. Rare mutations in XRCC2 increase the risk of breast cancer. Am J Hum Genet. 2012/03/29. 2012;90: 734–739. doi: 10.1016/j.ajhg.2012.02.027 22464251

76. Somyajit K, Subramanya S, Nagaraju G. Distinct roles of FANCO/RAD51C protein in DNA damage signaling and repair: implications for Fanconi anemia and breast cancer susceptibility. J Biol Chem. 2012;287: 3366–3380. doi: 10.1074/jbc.M111.311241 22167183

77. Zheng Y, Zhang J, Hope K, Niu Q, Huo D, Olopade OI. Screening RAD51C nucleotide alterations in patients with a family history of breast and ovarian cancer. Breast Cancer Res Treat. 2010/08/10. 2010;124: 857–861. doi: 10.1007/s10549-010-1095-5 20697805

78. Park JY, Virts EL, Jankowska A, Wiek C, Othman M, Chakraborty SC, et al. Complementation of hypersensitivity to DNA interstrand crosslinking agents demonstrates that XRCC2 is a Fanconi anaemia gene. J Med Genet. 2016/05/20. 2016;53: 672–680. doi: 10.1136/jmedgenet-2016-103847 27208205

79. Somyajit K, Subramanya S, Nagaraju G. RAD51C: a novel cancer susceptibility gene is linked to Fanconi anemia and breast cancer. Carcinogenesis. 2010;31: 2031–2038. doi: 10.1093/carcin/bgq210 20952512

80. Vaz F, Hanenberg H, Schuster B, Barker K, Wiek C, Erven V, et al. Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet. 2010;42: 406–409. doi: 10.1038/ng.570 20400963

81. Feng W, Jasin M. BRCA2 suppresses replication stress-induced mitotic and G1 abnormalities through homologous recombination. Nat Commun. 2017;8: 525. doi: 10.1038/s41467-017-00634-0 28904335

82. Brunet E, Simsek D, Tomishima M, DeKelver R, Choi VM, Gregory P, et al. Chromosomal translocations induced at specified loci in human stem cells. Proc Natl Acad Sci. 2009;106: 10620–10625. doi: 10.1073/pnas.0902076106 19549848

83. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. 2009;27: 851–857. doi: 10.1038/nbt.1562 19680244

84. Esashi F, Christ N, Cannon J, Liu Y, Hunt T, Jasin M, et al. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature. 2005;434: 598–604. doi: 10.1038/nature03404 15800615

85. Hays SL, Firmenich a a, Berg P. Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins. Proc Natl Acad Sci. 1995;92: 6925–6929. doi: 10.1073/pnas.92.15.6925 7624345

86. Johnson RD, Symington LS. Functional differences and interactions among the putative RecA homologs Rad51, Rad55, and Rad57. Mol Cell Biol. 1995;15: 4843–4850. doi: 10.1128/mcb.15.9.4843 7651402

87. Fujimori A. Rad52 partially substitutes for the Rad51 paralog XRCC3 in maintaining chromosomal integrity in vertebrate cells. EMBO J. 2001;20: 5513–5520. doi: 10.1093/emboj/20.19.5513 11574483

88. Park JY, Virts EL, Jankowska A, Wiek C, Othman M, Chakraborty SC, et al. Complementation of hypersensitivity to DNA interstrand crosslinking agents demonstrates that XRCC2 is a Fanconi anaemia gene. J Med Genet. 2016;53: 672–680. doi: 10.1136/jmedgenet-2016-103847 27208205

89. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434: 913–917. doi: 10.1038/nature03443 15829966

90. Debeb BG, Zhang X, Krishnamurthy S, Gao H, Cohen E, Li L, et al. Characterizing cancer cells with cancer stem cell-like features in 293T human embryonic kidney cells. Mol Cancer. 2010;9: 180. doi: 10.1186/1476-4598-9-180 20615238

91. Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, MacLeod G, et al. High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell. 2015;163: 1515–1526. doi: 10.1016/j.cell.2015.11.015 26627737

92. Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y, Wei JJ, et al. Identification and characterization of essential genes in the human genome. Science. 2015;350: 1096–1101. doi: 10.1126/science.aac7041 26472758

93. Wang T, Yu H, Hughes NW, Liu B, Kendirli A, Klein K, et al. Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras. Cell. 2017; doi: 10.1016/j.cell.2017.01.013 28162770

94. Rijkers T, Van Den Ouweland J, Morolli B, Rolink a G, Baarends WM, Van Sloun PP, et al. Targeted inactivation of mouse RAD52 reduces homologous recombination but not resistance to ionizing radiation. Mol Cell Biol. 1998;18: 6423–6429. Available: http://www.ncbi.nlm.nih.gov/pubmed/9774658 doi: 10.1128/mcb.18.11.6423 9774658

95. Sotiriou SK, Kamileri I, Lugli N, Evangelou K, Da-Ré C, Huber F, et al. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks. Mol Cell. 2016;64: 1127–1134. doi: 10.1016/j.molcel.2016.10.038 27984746

96. Yasuhara T, Kato R, Hagiwara Y, Shiotani B, Yamauchi M, Nakada S, et al. Human Rad52 Promotes XPG-Mediated R-loop Processing to Initiate Transcription-Associated Homologous Recombination Repair. Cell. 2018;175: 558–570.e11. doi: 10.1016/j.cell.2018.08.056 30245011

97. Blomen VA, Majek P, Jae LT, Bigenzahn JW, Nieuwenhuis J, Staring J, et al. Gene essentiality and synthetic lethality in haploid human cells. Science (80-). 2015;350: 1092–1096. doi: 10.1126/science.aac7557 26472760

98. Buerstedde JM, Takeda S. Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell. 1991; doi: 10.1016/0092-8674(91)90581-I

99. Gildemeister OS, Sage JM, Knight KL. Cellular redistribution of Rad51 in response to DNA damage: novel role for Rad51C. J Biol Chem. 2009;284: 31945–31952. doi: 10.1074/jbc.M109.024646 19783859

100. Bhattacharyya NP, Skandalis A, Ganesh A, Groden J, Meuth M. Mutator phenotypes in human colorectal carcinoma cell lines. Proc Natl Acad Sci. 1994;91: 6319–6323. doi: 10.1073/pnas.91.14.6319 8022779

101. Liu J, Renault L, Veaute X, Fabre F, Stahlberg H, Heyer W-D. Rad51 paralogues Rad55–Rad57 balance the antirecombinase Srs2 in Rad51 filament formation. Nature. 2011;479: 245–248. doi: 10.1038/nature10522 22020281

102. Baldock RA, Pressimone CA, Baird JM, Khodakov A, Luong TT, Grundy MK, et al. RAD51D splice variants and cancer-associated mutations reveal XRCC2 interaction to be critical for homologous recombination. DNA Repair (Amst). 2019;76: 99–107. doi: 10.1016/j.dnarep.2019.02.008 30836272

103. Kondrashova O, Nguyen M, Shield-Artin K, Tinker A V., Teng NNH, Harrell MI, et al. Secondary Somatic Mutations Restoring RAD51C and RAD51D Associated with Acquired Resistance to the PARP Inhibitor Rucaparib in High-Grade Ovarian Carcinoma. Cancer Discov. 2017;7: 984–998. doi: 10.1158/2159-8290.CD-17-0419 28588062

104. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8: 2281–2308. doi: 10.1038/nprot.2013.143 24157548

105. Richardson C, Moynahan ME, Jasin M. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev. 1998;12: 3831–3842. Available: https://www.ncbi.nlm.nih.gov/pubmed/9869637 doi: 10.1101/gad.12.24.3831 9869637

106. Essers J, Hendriks RW, Wesoly J, Beerens CEMT, Smit B, Hoeijmakers JHJ, et al. Analysis of mouse Rad54 expression and its implications for homologous recombination. DNA Repair (Amst). 2002; doi: 10.1016/S1568-7864(02)00110-6

107. Lapytsko A, Kollarovic G, Ivanova L, Studencka M, Schaber J. FoCo: a simple and robust quantification algorithm of nuclear foci. BMC Bioinformatics. 2015/11/21. 2015;16: 392. doi: 10.1186/s12859-015-0816-5 26589438

108. Uphoff CC, Drexler HG. Detection of Mycoplasma Contamination in Cell Cultures. Current Protocols in Molecular Biology. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2014. pp. 28.4.1–28.4.14. doi: 10.1002/0471142727.mb2804s106 24733240

109. Uphoff CC, Denkmann SA, Steube KG, Drexler HG. Detection of EBV, HBV, HCV, HIV-1, HTLV-I and -II, and SMRV in Human and Other Primate Cell Lines. J Biomed Biotechnol. 2010;2010: 1–23. doi: 10.1155/2010/904767 20454443

110. Uphoff CC, Lange S, Denkmann SA, Garritsen HSP, Drexler HG. Prevalence and Characterization of Murine Leukemia Virus Contamination in Human Cell Lines. Duan Z, editor. PLoS One. 2015;10: e0125622. doi: 10.1371/journal.pone.0125622 25927683

111. Dirks WG, Drexler HG. STR DNA Typing of Human Cell Lines: Detection of Intra- and Interspecies Cross-Contamination. Methods in Molecular Biology. 2013. pp. 27–38. doi: 10.1007/978-1-62703-128-8_3 23179824

112. Dirks WG, MacLeod RAF, Nakamura Y, Kohara A, Reid Y, Milch H, et al. Cell line cross-contamination initiative: An interactive reference database of STR profiles covering common cancer cell lines. Int J Cancer. 2010;126: 303–304. doi: 10.1002/ijc.24999 19859913

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2019 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Aktuální možnosti diagnostiky a léčby litiáz
nový kurz
Autori: MUDr. Tomáš Ürge, PhD.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#