Selective breeding modifies mef2ca mutant incomplete penetrance by tuning the opposing Notch pathway
Autoři:
Juliana Sucharov aff001; Kuval Ray aff001; Elliott P. Brooks aff001; James T. Nichols aff001
Působiště autorů:
Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
aff001
Vyšlo v časopise:
Selective breeding modifies mef2ca mutant incomplete penetrance by tuning the opposing Notch pathway. PLoS Genet 15(12): e32767. doi:10.1371/journal.pgen.1008507
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1008507
Souhrn
Deleterious genetic mutations allow developmental biologists to understand how genes control development. However, not all loss of function genetic mutants develop phenotypic changes. Many deleterious mutations only produce a phenotype in a subset of mutant individuals, a phenomenon known as incomplete penetrance. Incomplete penetrance can confound analyses of gene function and our understanding of this widespread phenomenon remains inadequate. To better understand what controls penetrance, we capitalized on the zebrafish mef2ca mutant which produces craniofacial phenotypes with variable penetrance. Starting with a characterized mef2ca loss of function mutant allele, we used classical selective breeding methods to generate zebrafish strains in which mutant-associated phenotypes consistently appear with low or high penetrance. Strikingly, our selective breeding for low penetrance converted the mef2ca mutant allele behavior from homozygous lethal to homozygous viable. Meanwhile, selective breeding for high penetrance converted the mef2ca mutant allele from fully recessive to partially dominant. Comparing the selectively-bred low- and high-penetrance strains revealed that the strains initially respond similarly to the mutation, but then gene expression differences between strains emerge during development. Thus, altered temporal genetic circuitry can manifest through selective pressure to modify mutant penetrance. Specifically, we demonstrate differences in Notch signaling between strains, and further show that experimental manipulation of the Notch pathway phenocopies penetrance changes occurring through selective breeding. This study provides evidence that penetrance is inherited as a liability-threshold trait. Our finding that vertebrate animals can overcome a deleterious mutation by tuning genetic circuitry complements other reported mechanisms of overcoming deleterious mutations such as transcriptional adaptation of compensatory genes, alternative mRNA splicing, and maternal deposition of wild-type transcripts, which are not observed in our system. The selective breeding approach and the resultant genetic circuitry change we uncovered advances and expands our current understanding of genetic and developmental resilience.
Klíčová slova:
Phenotypes – Alleles – Embryos – Alizarin staining – Cartilage – Zebrafish – Notch signaling – Deletion mutation
Zdroje
1. Griffiths AJ, Wessler SR, Lewontin RC, Gelbart WM, Suzuki DT, Miller JH. An introduction to genetic analysis: Macmillan; 2005.
2. Consortium GP. A global reference for human genetic variation. Nature. 2015;526(7571):68. doi: 10.1038/nature15393 26432245
3. Chen R, Shi L, Hakenberg J, Naughton B, Sklar P, Zhang J, et al. Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian childhood diseases. Nature biotechnology. 2016;34(5):531. doi: 10.1038/nbt.3514 27065010
4. Kok FO, Shin M, Ni C-W, Gupta A, Grosse AS, van Impel A, et al. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Developmental cell. 2015;32(1):97–108. doi: 10.1016/j.devcel.2014.11.018 25533206
5. Rossi A, Kontarakis Z, Gerri C, Nolte H, Hölper S, Krüger M, et al. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature. 2015.
6. Anderson JL, Mulligan TS, Shen M-C, Wang H, Scahill CM, Tan FJ, et al. mRNA processing in mutant zebrafish lines generated by chemical and CRISPR-mediated mutagenesis produces unexpected transcripts that escape nonsense-mediated decay. PLoS genetics. 2017;13(11):e1007105. doi: 10.1371/journal.pgen.1007105 29161261
7. Ciruna B, Weidinger G, Knaut H, Thisse B, Thisse C, Raz E, et al. Production of maternal-zygotic mutant zebrafish by germ-line replacement. Proceedings of the National Academy of Sciences. 2002;99(23):14919–24.
8. Dixon J, Dixon MJ. Genetic background has a major effect on the penetrance and severity of craniofacial defects in mice heterozygous for the gene encoding the nucleolar protein Treacle. Developmental dynamics: an official publication of the American Association of Anatomists. 2004;229(4):907–14.
9. Percival CJ, Marangoni P, Tapaltsyan V, Klein O, Hallgrímsson B. The Interaction of Genetic Background and Mutational Effects in Regulation of Mouse Craniofacial Shape. G3: Genes, Genomes, Genetics. 2017;7(5):1439–50.
10. Hummel DLCaKP. The influence of genetic background on the expression of the obese (Ob) gene in the mouse. Diabetologia. 1973;9.
11. Threadgill DW, Dlugosz AA, Hansen LA, Tennenbaum T, Lichti U, Yee D, et al. Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science. 1995;269(5221):230–4. doi: 10.1126/science.7618084 7618084
12. Cooper DN, Krawczak M, Polychronakos C, Tyler-Smith C, Kehrer-Sawatzki H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Human genetics. 2013;132(10):1077–130. doi: 10.1007/s00439-013-1331-2 23820649
13. Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, White JK, et al. High-throughput discovery of novel developmental phenotypes. Nature. 2016;537(7621):508. doi: 10.1038/nature19356 27626380
14. St Johnston D. The art and design of genetic screens: Drosophila melanogaster. Nature reviews genetics. 2002;3(3):176. doi: 10.1038/nrg751 11972155
15. Forsburg SL. The art and design of genetic screens: yeast. Nature Reviews Genetics. 2001;2(9):659. doi: 10.1038/35088500 11533715
16. Kile BT, Hilton DJ. The art and design of genetic screens: mouse. Nature Reviews Genetics. 2005;6(7):557. doi: 10.1038/nrg1636 15951745
17. Teng X, Dayhoff-Brannigan M, Cheng W-C, Gilbert CE, Sing CN, Diny NL, et al. Genome-wide consequences of deleting any single gene. Molecular cell. 2013;52(4):485–94. doi: 10.1016/j.molcel.2013.09.026 24211263
18. Green RM, Fish JL, Young NM, Smith FJ, Roberts B, Dolan K, et al. Developmental nonlinearity drives phenotypic robustness. Nature communications. 2017;8(1):1970. doi: 10.1038/s41467-017-02037-7 29213092
19. Raj A, Rifkin SA, Andersen E, van Oudenaarden A. Variability in gene expression underlies incomplete penetrance. Nature. 2010;463(7283):913–8. doi: 10.1038/nature08781 20164922
20. Nichols JT, Blanco-Sanchez B, Brooks EP, Parthasarathy R, Dowd J, Subramanian A, et al. Ligament versus bone cell identity in the zebrafish hyoid skeleton is regulated by mef2ca. Development. 2016;143(23):4430–40. doi: 10.1242/dev.141036 27789622
21. Amaral IP, Johnston IA. Experimental selection for body size at age modifies early life-history traits and muscle gene expression in adult zebrafish. Journal of Experimental Biology. 2012;215(22):3895–904.
22. Gordon C, Tessier A, Demir Z, Goldenberg A, Oufadem M, Voisin N, et al. The association of severe encephalopathy and question mark ear is highly suggestive of loss of MEF2C function. Clinical genetics. 2018;93(2):356–9.
23. Verzi MP, Agarwal P, Brown C, McCulley DJ, Schwarz JJ, Black BL. The transcription factor MEF2C is required for craniofacial development. Developmental Cell. 2007;12(4):645–52. doi: 10.1016/j.devcel.2007.03.007 17420000
24. Miller CT, Swartz ME, Khuu PA, Walker MB, Eberhart JK, Kimmel CB. mef2ca is required in cranial neural crest to effect Endothelin1 signaling in zebrafish. Dev Biol. 2007;308(1):144–57. doi: 10.1016/j.ydbio.2007.05.018 17574232
25. Tonk V, Kyhm JH, Gibson CE, Wilson GN. Interstitial deletion 5q14. 3q21. 3 with MEF2C haploinsufficiency and mild phenotype: when more is less. American Journal of Medical Genetics Part A. 2011;155(6):1437–41.
26. DeLaurier A, Huycke TR, Nichols JT, Swartz ME, Larsen A, Walker C, et al. Role of mef2ca in developmental buffering of the zebrafish larval hyoid dermal skeleton. Developmental Biology. 2014;385(2):189–99. doi: 10.1016/j.ydbio.2013.11.016 24269905
27. Hu J, Verzi MP, Robinson AS, Tang PL-F, Hua LL, Xu S-M, et al. Endothelin signaling activates Mef2c expression in the neural crest through a MEF2C-dependent positive-feedback transcriptional pathway. Development. 2015;142(16):2775–80. doi: 10.1242/dev.126391 26160899
28. Clouthier DE, Garcia E, Schilling TF. Regulation of Facial Morphogenesis by Endothelin Signaling: Insights From Mice and Fish. American Journal of Medical Genetics Part A. 2010;152A(12):2962–73. doi: 10.1002/ajmg.a.33568 20684004
29. Zuniga E, Stellabotte F, Crump JG. Jagged-Notch signaling ensures dorsal skeletal identity in the vertebrate face. Development. 2010;137(11):1843–52. doi: 10.1242/dev.049056 20431122
30. Barske L, Askary A, Zuniga E, Balczerski B, Bump P, Nichols JT, et al. Competition between Jagged-Notch and Endothelin1 Signaling Selectively Restricts Cartilage Formation in the Zebrafish Upper Face. PLoS Genet. 2016;12(4):e1005967. doi: 10.1371/journal.pgen.1005967 27058748
31. Walker MB, Miller CT, Coffin Talbot J, Stock DW, Kimmel CB. Zebrafish furin mutants reveal intricacies in regulating Endothelin1 signaling in craniofacial patterning. Dev Biol. 2006;295(1):194–205. doi: 10.1016/j.ydbio.2006.03.028 16678149
32. Abad M, Hashimoto H, Zhou H, Morales MG, Chen B, Bassel-Duby R, et al. Notch inhibition enhances cardiac reprogramming by increasing MEF2C transcriptional activity. Stem Cell Reports. 2017;8(3):548–60. doi: 10.1016/j.stemcr.2017.01.025 28262548
33. Wilson-Rawls J, Molkentin JD, Black BL, Olson EN. Activated notch inhibits myogenic activity of the MADS-Box transcription factor myocyte enhancer factor 2C. Molecular and cellular biology. 1999;19(4):2853–62. doi: 10.1128/mcb.19.4.2853 10082551
34. Pallavi S, Ho DM, Hicks C, Miele L, Artavanis‐Tsakonas S. Notch and Mef2 synergize to promote proliferation and metastasis through JNK signal activation in Drosophila. The EMBO journal. 2012;31(13):2895–907. doi: 10.1038/emboj.2012.129 22580825
35. Monson CA, Sadler KC. Inbreeding depression and outbreeding depression are evident in wild-type zebrafish lines. Zebrafish. 2010;7(2):189–97. doi: 10.1089/zeb.2009.0648 20438386
36. Shinya M, Sakai N. Generation of Highly Homogeneous Strains of Zebrafish Through Full Sib-Pair Mating. G3-Genes Genomes Genetics. 2011;1(5):377–86.
37. Brooks E, Nichols J. Shifting Zebrafish Lethal Skeletal Mutant Penetrance by Progeny Testing. Journal of visualized experiments: JoVE. 2017(127):e56200.
38. Schilling TF, Kimmel CB. Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. Development. 1994;120(3):483–94. 8162849
39. Schilling TF, Kimmel CB. Musculoskeletal patterning in the pharyngeal segments of the zebrafish embryo. Development. 1997;124(15):2945–60. 9247337
40. Noden DM. The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. American Journal of Anatomy. 1983;168(3):257–76. doi: 10.1002/aja.1001680302 6650439
41. Walker MB, Miller CT, Swartz ME, Eberhart JK, Kimmel CB. phospholipase C, beta 3 is required for Endothelin1 regulation of pharyngeal arch patterning in zebrafish. Dev Biol. 2007;304(1):194–207. doi: 10.1016/j.ydbio.2006.12.027 17239364
42. Miller CT, Schilling TF, Lee K, Parker J, Kimmel CB. sucker encodes a zebrafish Endothelin-1 required for ventral pharyngeal arch development. Development. 2000;127(17):3815–28. 10934026
43. El-Brolosy MA, Kontarakis Z, Rossi A, Kuenne C, Guenther S, Fukuda N, et al. Genetic compensation triggered by mutant mRNA degradation. Nature. 2019:1.
44. Ma Z, Zhu P, Shi H, Guo L, Zhang Q, Chen Y, et al. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature. 2019:1.
45. Lin Q, Schwarz J, Bucana C, Olson EN. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science. 1997;276(5317):1404–7. doi: 10.1126/science.276.5317.1404 9162005
46. Li C, Zhang J. Stop-codon read-through arises largely from molecular errors and is generally nonadaptive. PLoS genetics. 2019;15(5):e1008141. doi: 10.1371/journal.pgen.1008141 31120886
47. Talbot JC, Johnson SL, Kimmel CB. hand2 and Dlx genes specify dorsal, intermediate and ventral domains within zebrafish pharyngeal arches. Development. 2010;137(15):2506–16.
48. Barske L, Rataud P, Behizad K, Del Rio L, Cox SG, Crump JG. Essential role of Nr2f nuclear receptors in patterning the vertebrate upper jaw. Developmental cell. 2018;44(3):337–47. e5. doi: 10.1016/j.devcel.2017.12.022 29358039
49. Askary A, Xu P, Barske L, Bay M, Bump P, Balczerski B, et al. Genome-wide analysis of facial skeletal regionalization in zebrafish. Development. 2017;144(16):2994–3005. doi: 10.1242/dev.151712 28705894
50. Meinecke L, Sharma PP, Du H, Zhang L, Nie Q, Schilling TF. Modeling craniofacial development reveals spatiotemporal constraints on robust patterning of the mandibular arch. PLoS computational biology. 2018;14(11):e1006569. doi: 10.1371/journal.pcbi.1006569 30481168
51. Acampora D, Merlo GR, Paleari L, Zerega B, Postiglione MP, Mantero S, et al. Craniofacial, vestibular and bone defects in mice lacking the Distal-less-related gene Dlx5. Development. 1999;126(17):3795–809. 10433909
52. Depew MJ, Liu JK, Long JE, Presley R, Meneses JJ, Pedersen RA, et al. Dlx5 regulates regional development of the branchial arches and sensory capsules. Development. 1999;126(17):3831–46. 10433912
53. Fuwa H, Takahashi Y, Konno Y, Watanabe N, Miyashita H, Sasaki M, et al. Divergent synthesis of multifunctional molecular probes to elucidate the enzyme specificity of dipeptidic γ-secretase inhibitors. ACS chemical biology. 2007;2(6):408–18. doi: 10.1021/cb700073y 17530731
54. Ichida JK, Julia T, Williams LA, Carter AC, Shi Y, Moura MT, et al. Notch inhibition allows oncogene-independent generation of iPS cells. Nature chemical biology. 2014;10(8):632. doi: 10.1038/nchembio.1552 24952596
55. Nichols JT, Miyamoto A, Olsen SL, D'Souza B, Yao C, Weinmaster G. DSL ligand endocytosis physically dissociates Notch1 heterodimers before activating proteolysis can occur. J Cell Biol. 2007;176(4):445–58. doi: 10.1083/jcb.200609014 17296795
56. Nichols JT, Miyamoto A, Weinmaster G. Notch signaling—constantly on the move. Traffic. 2007;8(8):959–69. doi: 10.1111/j.1600-0854.2007.00592.x 17547700
57. Zuniga E, Rippen M, Alexander C, Schilling TF, Crump JG. Gremlin 2 regulates distinct roles of BMP and Endothelin 1 signaling in dorsoventral patterning of the facial skeleton. Development. 2011;138(23):5147–56. doi: 10.1242/dev.067785 22031546
58. Alvarado E, Yousefelahiyeh M, Alvarado G, Shang R, Whitman T, Martinez A, et al. Wdr68 Mediates Dorsal and Ventral Patterning Events for Craniofacial Development. PloS one. 2016;11(11):e0166984. doi: 10.1371/journal.pone.0166984 27880803
59. Avery L, Wasserman S. Ordering gene function: the interpretation of epistasis in regulatory hierarchies. Trends Genet. 1992;8(9):312–6. doi: 10.1016/0168-9525(92)90263-4 1365397
60. Falconer DS, Mackay TF, Frankham R. Introduction to quantitative genetics (4th edn). Trends in Genetics. 1996;12(7):280.
61. Ruest LB, Xiang X, Lim KC, Levi G, Clouthier DE. Endothelin-A receptor-dependent and -independent signaling pathways in establishing mandibular identity. Development. 2004;131(18):4413–23. doi: 10.1242/dev.01291 15306564
62. Sasaki MM, Nichols JT, Kimmel CB. edn1 and hand2 Interact in early regulation of pharyngeal arch outgrowth during zebrafish development. PLoS One. 2013;8(6):e67522. doi: 10.1371/journal.pone.0067522 23826316
63. Waddington CH. Genetic assimilation of an acquired character. Evolution. 1953:118–26.
64. Alexander C, Zuniga E, Blitz IL, Wada N, Le Pabic P, Javidan Y, et al. Combinatorial roles for BMPs and Endothelin 1 in patterning the dorsal-ventral axis of the craniofacial skeleton. Development. 2011;138(23):5135–46. doi: 10.1242/dev.067801 22031543
65. Ahsan K, Singh N, Rocha M, Huang C, Prince VE. Prickle1 is required for EMT and migration of zebrafish cranial neural crest. Developmental biology. 2019.
66. Merriam-Webster. Merriam-Webster.com: Houghton Mifflin Harcourt; 2019.
67. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Developmental dynamics. 1995;203(3):253–310. doi: 10.1002/aja.1002030302 8589427
68. Westerfield M. The zebrafish book: A guide for the laboratory use of zebrafish (Brachydanio rerio)1993.
69. Walker MB, Kimmel CB. A two-color acid-free cartilage and bone stain for zebrafish larvae. Biotech Histochem. 2007;82(1):23–8. doi: 10.1080/10520290701333558 17510811
70. Schmittgen TD, Livak KJJNp. Analyzing real-time PCR data by the comparative C T method. 2008;3(6):1101.
71. McCurley AT, Callard GVJBmb. Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment. 2008;9(1):102.
72. Nichols JT, Pan L, Moens CB, Kimmel CB. barx1 represses joints and promotes cartilage in the craniofacial skeleton. Development. 2013;140(13):2765–75. doi: 10.1242/dev.090639 23698351
73. Akimenko MA, Ekker M, Wegner J, Lin W, Westerfield M. Combinatorial expression of three zebrafish genes related to distal-less: part of a homeobox gene code for the head. J Neurosci. 1994;14(6):3475–86. doi: 10.1523/JNEUROSCI.14-06-03475.1994 7911517
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2019 Číslo 12
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance
- Architecture of the Escherichia coli nucleoid
- Common gardens in teosintes reveal the establishment of a syndrome of adaptation to altitude
- Restricted and non-essential redundancy of RNAi and piRNA pathways in mouse oocytes