Zfh2 controls progenitor cell activation and differentiation in the adult Drosophila intestinal absorptive lineage
Autoři:
Sebastian E. Rojas Villa aff001; Fanju W. Meng aff002; Benoît Biteau aff002
Působiště autorů:
Department of Biology, University of Rochester, Rochester, New York, United States of America
aff001; Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, United States of America
aff002
Vyšlo v časopise:
Zfh2 controls progenitor cell activation and differentiation in the adult Drosophila intestinal absorptive lineage. PLoS Genet 15(12): e32767. doi:10.1371/journal.pgen.1008553
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pgen.1008553
Souhrn
Many tissues rely on resident stem cell population to maintain homeostasis. The balance between cell proliferation and differentiation is critical to permit tissue regeneration and prevent dysplasia, particularly following tissue damage. Thus, understanding the cellular processes and genetic programs that coordinate these processes is essential. Here, we report that the conserved transcription factor zfh2 is specifically expressed in Drosophila adult intestinal stem cell and progenitors and is a critical regulator of cell differentiation in this lineage. We show that zfh2 expression is required and sufficient to drive the activation of enteroblasts, the non-proliferative progenitors of absorptive cells. This transition is characterized by the transient formation of thin membrane protrusions, morphological changes characteristic of migratory cells and compensatory stem cell proliferation. We found that zfh2 acts in parallel to insulin signaling and upstream of the TOR growth-promoting pathway during early differentiation. Finally, maintaining zfh2 expression in late enteroblasts blocks terminal differentiation and leads to the formation of highly dysplastic lesions, defining a new late cell differentiation transition. Together, our study greatly improves our understanding of the cascade of cellular changes and regulatory steps that control differentiation in the adult fly midgut and identifies zfh2 as a major player in these processes.
Klíčová slova:
Drosophila melanogaster – Cell differentiation – Stem cells – Transcription factors – Gastrointestinal tract – Differentiated tumors – Insulin signaling – TOR signaling
Zdroje
1. Neumuller R.A. and Knoblich J.A., Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev, 2009. 23(23): p. 2675–99. doi: 10.1101/gad.1850809 19952104
2. Micchelli C.A. and Perrimon N., Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature, 2006. 439(7075): p. 475–9. doi: 10.1038/nature04371 16340959
3. Ohlstein B. and Spradling A., The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature, 2006. 439(7075): p. 470–4. doi: 10.1038/nature04333 16340960
4. Biteau B. and Jasper H., Slit/Robo Signaling Regulates Cell Fate Decisions in the Intestinal Stem Cell Lineage of Drosophila. Cell Rep, 2014. 7(6): p. 1867–75. doi: 10.1016/j.celrep.2014.05.024 24931602
5. Amcheslavsky A., Jiang J., and Ip Y.T., Tissue damage-induced intestinal stem cell division in Drosophila. Cell Stem Cell, 2009. 4(1): p. 49–61. doi: 10.1016/j.stem.2008.10.016 19128792
6. Buchon N., et al., Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe, 2009. 5(2): p. 200–11. doi: 10.1016/j.chom.2009.01.003 19218090
7. Chatterjee M. and Ip Y.T., Pathogenic stimulation of intestinal stem cell response in Drosophila. J Cell Physiol, 2009. 220(3): p. 664–71. doi: 10.1002/jcp.21808 19452446
8. Jiang H., et al., Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell, 2009. 137(7): p. 1343–55. doi: 10.1016/j.cell.2009.05.014 19563763
9. Amcheslavsky A., et al., Tuberous sclerosis complex and Myc coordinate the growth and division of Drosophila intestinal stem cells. J Cell Biol, 2011. 193(4): p. 695–710. doi: 10.1083/jcb.201103018 21555458
10. Kapuria S., et al., Notch-Mediated Suppression of TSC2 Expression Regulates Cell Differentiation in the Drosophila Intestinal Stem Cell Lineage. PLoS Genet, 2012. 8(11): p. e1003045. doi: 10.1371/journal.pgen.1003045 23144631
11. Choi N.H., Lucchetta E., and Ohlstein B., Nonautonomous regulation of Drosophila midgut stem cell proliferation by the insulin-signaling pathway. Proc Natl Acad Sci U S A, 2011. 108(46): p. 18702–7. doi: 10.1073/pnas.1109348108 22049341
12. Xiang J., et al., EGFR-dependent TOR-independent endocycles support Drosophila gut epithelial regeneration. Nat Commun, 2017. 8: p. 15125. doi: 10.1038/ncomms15125 28485389
13. Antonello Z.A., et al., Robust intestinal homeostasis relies on cellular plasticity in enteroblasts mediated by miR-8-Escargot switch. EMBO J, 2015. 34(15): p. 2025–41. doi: 10.15252/embj.201591517 26077448
14. Zhai Z., et al., Accumulation of differentiating intestinal stem cell progenies drives tumorigenesis. Nat Commun, 2015. 6: p. 10219. doi: 10.1038/ncomms10219 26690827
15. Chen J., et al., A feedback amplification loop between stem cells and their progeny promotes tissue regeneration and tumorigenesis. Elife, 2016. 5.
16. Lai Z.C., Fortini M.E., and Rubin G.M., The embryonic expression patterns of zfh-1 and zfh-2, two Drosophila genes encoding novel zinc-finger homeodomain proteins. Mech Dev, 1991. 34(2–3): p. 123–34. doi: 10.1016/0925-4773(91)90049-c 1680377
17. Terriente J., et al., The Drosophila gene zfh2 is required to establish proximal-distal domains in the wing disc. Dev Biol, 2008. 320(1): p. 102–12. doi: 10.1016/j.ydbio.2008.04.028 18571155
18. Perea D., et al., Multiple roles of the gene zinc finger homeodomain-2 in the development of the Drosophila wing. Mech Dev, 2013. 130(9–10): p. 467–81. doi: 10.1016/j.mod.2013.06.002 23811114
19. Guarner A., et al., The zinc finger homeodomain-2 gene of Drosophila controls Notch targets and regulates apoptosis in the tarsal segments. Dev Biol, 2014. 385(2): p. 350–65. doi: 10.1016/j.ydbio.2013.10.011 24144920
20. Lundell M.J. and Hirsh J., The zfh-2 gene product is a potential regulator of neuron-specific dopa decarboxylase gene expression in Drosophila. Dev Biol, 1992. 154(1): p. 84–94. doi: 10.1016/0012-1606(92)90050-q 1426635
21. Helenius I.T., et al., Identification of Drosophila Zfh2 as a Mediator of Hypercapnic Immune Regulation by a Genome-Wide RNA Interference Screen. J Immunol, 2016. 196(2): p. 655–667. doi: 10.4049/jimmunol.1501708 26643480
22. Sun X., et al., Deletion of atbf1/zfhx3 in mouse prostate causes neoplastic lesions, likely by attenuation of membrane and secretory proteins and multiple signaling pathways. Neoplasia, 2014. 16(5): p. 377–89. doi: 10.1016/j.neo.2014.05.001 24934715
23. Zhang Z., et al., ATBF1-a messenger RNA expression is correlated with better prognosis in breast cancer. Clin Cancer Res, 2005. 11(1): p. 193–8. 15671546
24. Cho Y.G., et al., Genetic alterations of the ATBF1 gene in gastric cancer. Clin Cancer Res, 2007. 13(15 Pt 1): p. 4355–9.
25. Sun X., et al., Frequent somatic mutations of the transcription factor ATBF1 in human prostate cancer. Nat Genet, 2005. 37(4): p. 407–12. doi: 10.1038/ng1528 15750593
26. Hemmi K., et al., A homeodomain-zinc finger protein, ZFHX4, is expressed in neuronal differentiation manner and suppressed in muscle differentiation manner. Biol Pharm Bull, 2006. 29(9): p. 1830–5. doi: 10.1248/bpb.29.1830 16946494
27. Qing T., et al., Somatic mutations in ZFHX4 gene are associated with poor overall survival of Chinese esophageal squamous cell carcinoma patients. Sci Rep, 2017. 7(1): p. 4951. doi: 10.1038/s41598-017-04221-7 28694483
28. Buchon N., et al., Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Rep, 2013. 3(5): p. 1725–38. doi: 10.1016/j.celrep.2013.04.001 23643535
29. Doupe D.P., et al., Drosophila intestinal stem and progenitor cells are major sources and regulators of homeostatic niche signals. Proc Natl Acad Sci U S A, 2018.
30. Ohlstein B. and Spradling A., Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science, 2007. 315(5814): p. 988–92. doi: 10.1126/science.1136606 17303754
31. Calleja M., et al., Visualization of gene expression in living adult Drosophila. Science, 1996. 274(5285): p. 252–5. doi: 10.1126/science.274.5285.252 8824191
32. Zhai Z., Boquete J.P., and Lemaitre B., A genetic framework controlling the differentiation of intestinal stem cells during regeneration in Drosophila. PLoS Genet, 2017. 13(6): p. e1006854. doi: 10.1371/journal.pgen.1006854 28662029
33. Evans C.J., et al., G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nat Methods, 2009. 6(8): p. 603–5. doi: 10.1038/nmeth.1356 19633663
34. Biteau B., et al., Lifespan extension by preserving proliferative homeostasis in Drosophila. PLoS Genet, 2010. 6(10): p. e1001159. doi: 10.1371/journal.pgen.1001159 20976250
35. O'Brien L.E., et al., Altered modes of stem cell division drive adaptive intestinal growth. Cell, 2011. 147(3): p. 603–14. doi: 10.1016/j.cell.2011.08.048 22036568
36. Yamashita Y.M., Inaba M., and Buszczak M., Specialized Intercellular Communications via Cytonemes and Nanotubes. Annu Rev Cell Dev Biol, 2018. 34: p. 59–84. doi: 10.1146/annurev-cellbio-100617-062932 30074816
37. Perdigoto C.N., Schweisguth F., and Bardin A.J., Distinct levels of Notch activity for commitment and terminal differentiation of stem cells in the adult fly intestine. Development, 2011. 138(21): p. 4585–95. doi: 10.1242/dev.065292 21965616
38. Korzelius J., et al., Escargot maintains stemness and suppresses differentiation in Drosophila intestinal stem cells. EMBO J, 2014. 33(24): p. 2967–82. doi: 10.15252/embj.201489072 25298397
39. Martin J.L., et al., Long-term live imaging of the Drosophila adult midgut reveals real-time dynamics of division, differentiation and loss. Elife, 2018. 7.
40. Jung C.G., et al., Homeotic factor ATBF1 induces the cell cycle arrest associated with neuronal differentiation. Development, 2005. 132(23): p. 5137–45. doi: 10.1242/dev.02098 16251211
41. Sun X., et al., Characterization of nuclear localization and SUMOylation of the ATBF1 transcription factor in epithelial cells. PLoS One, 2014. 9(3): p. e92746. doi: 10.1371/journal.pone.0092746 24651376
42. Zhang S., et al., AT motif binding factor 1 (ATBF1) is highly phosphorylated in embryonic brain and protected from cleavage by calpain-1. Biochem Biophys Res Commun, 2012. 427(3): p. 537–41. doi: 10.1016/j.bbrc.2012.09.092 23022192
43. Meng F.W. and Biteau B., A Sox Transcription Factor Is a Critical Regulator of Adult Stem Cell Proliferation in the Drosophila Intestine. Cell Rep, 2015. 13(5): p. 906–14. doi: 10.1016/j.celrep.2015.09.061 26565904
44. Schindelin J., et al., Fiji: an open-source platform for biological-image analysis. Nat Methods, 2012. 9(7): p. 676–82. doi: 10.1038/nmeth.2019 22743772
Štítky
Genetika Reprodukčná medicínaČlánok vyšiel v časopise
PLOS Genetics
2019 Číslo 12
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
Najčítanejšie v tomto čísle
- Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance
- Architecture of the Escherichia coli nucleoid
- Common gardens in teosintes reveal the establishment of a syndrome of adaptation to altitude
- Restricted and non-essential redundancy of RNAi and piRNA pathways in mouse oocytes