Malaria Burden and Artemisinin Resistance in the Mobile and Migrant Population on the Thai–Myanmar Border, 1999–2011: An Observational Study
Background:
The Shoklo Malaria Research Unit has been working on the Thai–Myanmar border for 25 y providing early diagnosis and treatment (EDT) of malaria. Transmission of Plasmodium falciparum has declined, but resistance to artesunate has emerged. We expanded malaria activities through EDT and evaluated the impact over a 12-y period.
Methods and Findings:
Between 1 October 1999 and 30 September 2011, the Shoklo Malaria Research Unit increased the number of cross-border (Myanmar side) health facilities from two to 11 and recorded the number of malaria consultations. Changes in malaria incidence were estimated from a cohort of pregnant women, and prevalence from cross-sectional surveys. In vivo and in vitro antimalarial drug efficacy were monitored. Over this period, the number of malaria cases detected increased initially, but then declined rapidly. In children under 5 y, the percentage of consultations due to malaria declined from 78% (95% CI 76–80) (1,048/1,344 consultations) to 7% (95% CI 6.2–7.1) (767/11,542 consultations), p<0.001. The ratio of P. falciparum/P. vivax declined from 1.4 (95% CI 1.3–1.4) to 0.7 (95% CI 0.7–0.8). The case fatality rate was low (39/75,126; 0.05% [95% CI 0.04–0.07]). The incidence of malaria declined from 1.1 to 0.1 episodes per pregnant women-year. The cumulative proportion of P. falciparum decreased significantly from 24.3% (95% CI 21.0–28.0) (143/588 pregnant women) to 3.4% (95% CI 2.8–4.3) (76/2,207 pregnant women), p<0.001. The in vivo efficacy of mefloquine-artesunate declined steadily, with a sharp drop in 2011 (day-42 PCR-adjusted cure rate 42% [95% CI 20–62]). The proportion of patients still slide positive for malaria at day 3 rose from 0% in 2000 to reach 28% (95% CI 13–45) (8/29 patients) in 2011.
Conclusions:
Despite the emergence of resistance to artesunate in P. falciparum, the strategy of EDT with artemisinin-based combination treatments has been associated with a reduction in malaria in the migrant population living on the Thai–Myanmar border. Although limited by its observational nature, this study provides useful data on malaria burden in a strategically crucial geographical area. Alternative fixed combination treatments are needed urgently to replace the failing first-line regimen of mefloquine and artesunate.
Please see later in the article for the Editors' Summary
Vyšlo v časopise:
Malaria Burden and Artemisinin Resistance in the Mobile and Migrant Population on the Thai–Myanmar Border, 1999–2011: An Observational Study. PLoS Med 10(3): e32767. doi:10.1371/journal.pmed.1001398
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1001398
Souhrn
Background:
The Shoklo Malaria Research Unit has been working on the Thai–Myanmar border for 25 y providing early diagnosis and treatment (EDT) of malaria. Transmission of Plasmodium falciparum has declined, but resistance to artesunate has emerged. We expanded malaria activities through EDT and evaluated the impact over a 12-y period.
Methods and Findings:
Between 1 October 1999 and 30 September 2011, the Shoklo Malaria Research Unit increased the number of cross-border (Myanmar side) health facilities from two to 11 and recorded the number of malaria consultations. Changes in malaria incidence were estimated from a cohort of pregnant women, and prevalence from cross-sectional surveys. In vivo and in vitro antimalarial drug efficacy were monitored. Over this period, the number of malaria cases detected increased initially, but then declined rapidly. In children under 5 y, the percentage of consultations due to malaria declined from 78% (95% CI 76–80) (1,048/1,344 consultations) to 7% (95% CI 6.2–7.1) (767/11,542 consultations), p<0.001. The ratio of P. falciparum/P. vivax declined from 1.4 (95% CI 1.3–1.4) to 0.7 (95% CI 0.7–0.8). The case fatality rate was low (39/75,126; 0.05% [95% CI 0.04–0.07]). The incidence of malaria declined from 1.1 to 0.1 episodes per pregnant women-year. The cumulative proportion of P. falciparum decreased significantly from 24.3% (95% CI 21.0–28.0) (143/588 pregnant women) to 3.4% (95% CI 2.8–4.3) (76/2,207 pregnant women), p<0.001. The in vivo efficacy of mefloquine-artesunate declined steadily, with a sharp drop in 2011 (day-42 PCR-adjusted cure rate 42% [95% CI 20–62]). The proportion of patients still slide positive for malaria at day 3 rose from 0% in 2000 to reach 28% (95% CI 13–45) (8/29 patients) in 2011.
Conclusions:
Despite the emergence of resistance to artesunate in P. falciparum, the strategy of EDT with artemisinin-based combination treatments has been associated with a reduction in malaria in the migrant population living on the Thai–Myanmar border. Although limited by its observational nature, this study provides useful data on malaria burden in a strategically crucial geographical area. Alternative fixed combination treatments are needed urgently to replace the failing first-line regimen of mefloquine and artesunate.
Please see later in the article for the Editors' Summary
Zdroje
1. World Health Organization (2011) World malaria report 2011. Geneva: World Health Organization.
2. HaySI, GuerraCA, TatemAJ, NoorAM, SnowRW (2004) The global distribution and population at risk of malaria: past, present, and future. Lancet Infect Dis 4: 327–336.
3. DondorpAM, NostenF, YiP, DasD, PhyoAP, et al. (2009) Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361: 455–467.
4. PhyoAP, NkhomaS, StepniewskaK, AshleyEA, NairS, et al. (2012) Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379: 1960–1966.
5. KorenrompEL, WilliamsBG, GouwsE, DyeC, SnowRW (2003) Measurement of trends in childhood malaria mortality in Africa: an assessment of progress toward targets based on verbal autopsy. Lancet Infect Dis 3: 349–358.
6. MarshK (1998) Malaria disaster in Africa. Lancet 352: 924.
7. DondorpA, NostenF, StepniewskaK, DayN, WhiteN (2005) Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet 366: 717–725.
8. DondorpAM, FanelloCI, HendriksenIC, GomesE, SeniA, et al. (2010) Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet 376: 1647–1657.
9. NostenF, van VugtM, PriceR, LuxemburgerC, ThwayKL, et al. (2000) Effects of artesunate-mefloquine combination on incidence of Plasmodium falciparum malaria and mefloquine resistance in western Thailand: a prospective study. Lancet 356: 297–302.
10. CarraraVI, SirilakS, ThonglairuamJ, RojanawatsirivetC, ProuxS, et al. (2006) Deployment of early diagnosis and mefloquine-artesunate treatment of falciparum malaria in Thailand: the Tak Malaria Initiative. PLoS Med 3: e183 doi:10.1371/journal.pmed.0030183.
11. VerdragerJ (1986) Epidemiology of the emergence and spread of drug-resistant falciparum malaria in South-East Asia and Australasia. J Trop Med Hyg 89: 277–289.
12. DecludtB, PecoulB, BibersonP, LangR, ImivithayaS (1991) Malaria surveillance among the displaced Karen population in Thailand April 1984 to February 1989, Mae Sot, Thailand. Southeast Asian J Trop Med Public Health 22: 504–508.
13. BrockmanA, PaulRE, AndersonTJ, HackfordI, PhaiphunL, et al. (1999) Application of genetic markers to the identification of recrudescent Plasmodium falciparum infections on the northwestern border of Thailand. Am J Trop Med Hyg 60: 14–21.
14. DelacolletteC, D'SouzaC, ChristophelE, ThimasarnK, AbdurR, et al. (2009) Malaria trends and challenges in the Greater Mekong Subregion. Southeast Asian J Trop Med Public Health 40: 674–691.
15. BarnesKI, DurrheimDN, LittleF, JacksonA, MehtaU, et al. (2005) Effect of artemether-lumefantrine policy and improved vector control on malaria burden in KwaZulu-Natal, South Africa. PLoS Med 2: e330 doi:10.1371/journal.pmed.0020330.
16. WhiteNJ (1999) Delaying antimalarial drug resistance with combination chemotherapy. Parassitologia 41: 301–308.
17. DolanG, ter KuileF, JacoutotV, WhiteNJ, LuxemburgerC, et al. (1993) Bed nets for the prevention of malaria and anaemia in pregnancy. Trans R Soc Trop Med Hyg 87: 620–626.
18. LooareesuwanS, WhiteNJ, ChittamasS, BunnagD, HarinasutaT (1987) High rate of Plasmodium vivax relapse following treatment of falciparum malaria in Thailand. Lancet 2: 1052–1055.
19. WhiteN (2011) Determinants of relapse periodicity in Plasmodium vivax malaria. Malar J 10: 297.
20. CheesemanIH, MillerBA, NairS, NkhomaS, TanA, et al. (2012) A major genome region underlying artemisinin resistance in malaria. Science 336: 79–82.
21. Kyle DE, Webster HK (1996) Postantibiotic effect of quinine and dihydroartemisinin derivatives on Plasmodium falciparum in vitro: implications for a mechanism of recrudescence [abstract]. XIVth International Congress for Tropical Medicine and Malaria; 17–22 November 1996; Nagasaki, Japan.
22. TeuscherF, GattonML, ChenN, PetersJ, KyleDE, et al. (2010) Artemisinin-induced dormancy in plasmodium falciparum: duration, recovery rates, and implications in treatment failure. J Infect Dis 202: 1362–1368.
23. SaralambaS, Pan-NgumW, MaudeRJ, LeeSJ, TarningJ, et al. (2011) Intrahost modeling of artemisinin resistance in Plasmodium falciparum. Proc Natl Acad Sci U S A 108: 397–402.
24. MokS, ImwongM, MackinnonM, SimJ, RamaodossR, et al. (2011) Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription. BMC Genomics 12: 391.
25. NostenF (2010) Waking the sleeping beauty. J Infect Dis 202: 1300–1301.
26. ChengQ, KyleDE, GattonML (2012) Artemisinin resistance in Plasmodium falciparum: a process linked to dormancy? Int J Parasitol Drugs Drug Resist 2: 249–255.
27. PhyoAP, LwinKM, PriceRN, AshleyEA, RussellB, et al. (2011) Dihydroartemisinin-piperaquine versus chloroquine in the treatment of Plasmodium vivax malaria in Thailand: a randomized controlled trial. Clin Infect Dis 53: 977–984.
28. DouglasNM, AnsteyNM, AngusBJ, NostenF, PriceRN (2010) Artemisinin combination therapy for vivax malaria. Lancet Infect Dis 10: 405–416.
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2013 Číslo 3
- Statiny indukovaná myopatie: Jak na diferenciální diagnostiku?
- MUDr. Dana Vondráčková: Hepatopatie sú pri liečbe metamizolom väčším strašiakom ako agranulocytóza
- Vztah mezi statiny a rizikem vzniku nádorových onemocnění − metaanalýza
- Nech brouka žít… Ať žije astma!
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
Najčítanejšie v tomto čísle
- Surveillance Programme of IN-patients and Epidemiology (SPINE): Implementation of an Electronic Data Collection Tool within a Large Hospital in Malawi
- Adjunctive Atypical Antipsychotic Treatment for Major Depressive Disorder: A Meta-Analysis of Depression, Quality of Life, and Safety Outcomes
- Strengthening the Expanded Programme on Immunization in Africa: Looking beyond 2015
- The Cost and Impact of Scaling Up Pre-exposure Prophylaxis for HIV Prevention: A Systematic Review of Cost-Effectiveness Modelling Studies