Using Routine Surveillance Data to Estimate the Epidemic Potential of Emerging Zoonoses: Application to the Emergence of US Swine Origin Influenza A H3N2v Virus
Background:
Prior to emergence in human populations, zoonoses such as SARS cause occasional infections in human populations exposed to reservoir species. The risk of widespread epidemics in humans can be assessed by monitoring the reproduction number R (average number of persons infected by a human case). However, until now, estimating R required detailed outbreak investigations of human clusters, for which resources and expertise are not always available. Additionally, existing methods do not correct for important selection and under-ascertainment biases. Here, we present simple estimation methods that overcome many of these limitations.
Methods and Findings:
Our approach is based on a parsimonious mathematical model of disease transmission and only requires data collected through routine surveillance and standard case investigations. We apply it to assess the transmissibility of swine-origin influenza A H3N2v-M virus in the US, Nipah virus in Malaysia and Bangladesh, and also present a non-zoonotic example (cholera in the Dominican Republic). Estimation is based on two simple summary statistics, the proportion infected by the natural reservoir among detected cases (G) and among the subset of the first detected cases in each cluster (F). If detection of a case does not affect detection of other cases from the same cluster, we find that R can be estimated by 1−G; otherwise R can be estimated by 1−F when the case detection rate is low. In more general cases, bounds on R can still be derived.
Conclusions:
We have developed a simple approach with limited data requirements that enables robust assessment of the risks posed by emerging zoonoses. We illustrate this by deriving transmissibility estimates for the H3N2v-M virus, an important step in evaluating the possible pandemic threat posed by this virus.
Please see later in the article for the Editors' Summary
Vyšlo v časopise:
Using Routine Surveillance Data to Estimate the Epidemic Potential of Emerging Zoonoses: Application to the Emergence of US Swine Origin Influenza A H3N2v Virus. PLoS Med 10(3): e32767. doi:10.1371/journal.pmed.1001399
Kategorie:
Research Article
prolekare.web.journal.doi_sk:
https://doi.org/10.1371/journal.pmed.1001399
Souhrn
Background:
Prior to emergence in human populations, zoonoses such as SARS cause occasional infections in human populations exposed to reservoir species. The risk of widespread epidemics in humans can be assessed by monitoring the reproduction number R (average number of persons infected by a human case). However, until now, estimating R required detailed outbreak investigations of human clusters, for which resources and expertise are not always available. Additionally, existing methods do not correct for important selection and under-ascertainment biases. Here, we present simple estimation methods that overcome many of these limitations.
Methods and Findings:
Our approach is based on a parsimonious mathematical model of disease transmission and only requires data collected through routine surveillance and standard case investigations. We apply it to assess the transmissibility of swine-origin influenza A H3N2v-M virus in the US, Nipah virus in Malaysia and Bangladesh, and also present a non-zoonotic example (cholera in the Dominican Republic). Estimation is based on two simple summary statistics, the proportion infected by the natural reservoir among detected cases (G) and among the subset of the first detected cases in each cluster (F). If detection of a case does not affect detection of other cases from the same cluster, we find that R can be estimated by 1−G; otherwise R can be estimated by 1−F when the case detection rate is low. In more general cases, bounds on R can still be derived.
Conclusions:
We have developed a simple approach with limited data requirements that enables robust assessment of the risks posed by emerging zoonoses. We illustrate this by deriving transmissibility estimates for the H3N2v-M virus, an important step in evaluating the possible pandemic threat posed by this virus.
Please see later in the article for the Editors' Summary
Zdroje
1. DawoodFS, JainS, FinelliL, ShawMW, LindstromS, et al. (2009) Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 360: 2605–2615.
2. DonnellyCA, FisherMC, FraserC, GhaniAC, RileyS, et al. (2004) Epidemiological and genetic analysis of severe acute respiratory syndrome. Lancet Infect Dis 4: 672–683.
3. WHO (2012) WHO Novel coronavirus infection - update. Available: http://www.who.int/csr/don/2012_11_23/en/index.html. Accessed 28 November 2012.
4. AntiaR, RegoesRR, KoellaJC, BergstromCT (2003) The role of evolution in the emergence of infectious diseases. Nature 426: 658–661.
5. CDC (2011) CDC Case count: Detected U.S. human infections with H3N2v by State since August 2011. Available: http://www.cdc.gov/flu/swineflu/h3n2v-case-count.htm#table1. Accessed 28 November 2012.
6. CDC (2012) Update: Influenza A (H3N2)v transmission and guidelines - five states, 2011. MMWR Morb Mortal Wkly Rep 60: 1741–1744.
7. CDC (2011) Limited human-to-human transmission of novel influenza A (H3N2) virus–Iowa, November 2011. MMWR Morb Mortal Wkly Rep 60: 1615–1617.
8. CDC (2012) Evaluation of rapid influenza diagnostic tests for influenza A (H3N2)v virus and updated case count - United States, 2012. MMWR Morb Mortal Wkly Rep 61: 1–3.
9. Lloyd-SmithJO, GeorgeD, PepinKM, PitzerVE, PulliamJR, et al. (2009) Epidemic dynamics at the human-animal interface. Science 326: 1362–1367.
10. FergusonNM, FraserC, DonnellyCA, GhaniAC, AndersonRM (2004) Public health. Public health risk from the avian H5N1 influenza epidemic. Science 304: 968–969.
11. YangY, HalloranME, SugimotoJD, LonginiIM (2007) Detecting human-to-human transmission of avian influenza a (H5N1). Emerg Infect Dis 13: 1348–1353.
12. Lloyd-SmithJO, SchreiberSJ, KoppPE, GetzWM (2005) Superspreading and the effect of individual variation on disease emergence. Nature 438: 355–359.
13. NishiuraH, YanP, SleemanCK, ModeCJ (2012) Estimating the transmission potential of supercritical processes based on the final size distribution of minor outbreaks. J Theor Biol 294: 48–55.
14. De SerresG, GayNJ, FarringtonCP (2000) Epidemiology of transmissible diseases after elimination. Am J Epidemiol 151: 1039–1048.
15. CDC (2011) Swine-origin influenza A (H3N2) virus infection in two children–Indiana and Pennsylvania, July–August 2011. MMWR Morb Mortal Wkly Rep 60: 1213–1215.
16. LindstromS, GartenR, BalishA, ShuB, EmeryS, et al. (2012) Human infections with novel reassortant influenza A(H3N2)v viruses, United States, 2011. Emerg Infect Dis 18: 834–837.
17. ChuaKB (2003) Nipah virus outbreak in Malaysia. J Clin Virol 26: 265–275.
18. CDC (1999) Update: outbreak of Nipah virus–Malaysia and Singapore, 1999. MMWR Morb Mortal Wkly Rep 48: 335–337.
19. ParasharUD, SunnLM, OngF, MountsAW, ArifMT, et al. (2000) Case-control study of risk factors for human infection with a new zoonotic paramyxovirus, Nipah virus, during a 1998–1999 outbreak of severe encephalitis in Malaysia. J Infect Dis 181: 1755–1759.
20. LubySP, GurleyES, HossainMJ (2009) Transmission of human infection with Nipah virus. Clin Infect Dis 49: 1743–1748.
21. LubySP, HossainMJ, GurleyES, AhmedBN, BanuS, et al. (2009) Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001–2007. Emerg Infect Dis 15: 1229–1235.
22. CDC (2010) Update on cholera — Haiti, Dominican Republic, and Florida, 2010. MMWR Morb Mortal Wkly Rep 59: 1637–1641.
23. WHO (2009) Nipah virus. Fact sheet 262. Available: http://www.who.int/mediacentre/factsheets/fs262/en/. Accessed 9 November 2012.
24. CauchemezS, BhattaraiA, MarchbanksTL, FaganRP, OstroffS, et al. (2011) Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza. P Natl Acad Sci U S A 108: 2825–2830.
25. CDC (2012) Increase in influenza A H3N2v virus infections in three U.S. states. Available: http://www.bt.cdc.gov/HAN/han00325.asp. Accessed 9 November 2012.
26. CDC (2012) Interim information for clinicians about human infections with H3N2v virus. Available: http://www.cdc.gov/flu/swineflu/h3n2v-clinician.htm. Accessed 9 November 2012.
27. ShamanJ, PitzerVE, ViboudC, GrenfellBT, LipsitchM (2010) Absolute humidity and the seasonal onset of influenza in the continental United States. PLoS Biol 8: e1000316 doi:10.1371/journal.pbio.1000316.
28. LaiTL (1995) Sequential changepoint detection in quality-control and dynamical-systems. J Roy Stat Soc B Met 57: 613–658.
29. LaiTL (2001) Sequential analysis: some classical problems and new challenges - Rejoinder. Stat Sinica 11: 388–408.
30. SonessonC, BockD (2003) A review and discussion of prospective statistical surveillance in public health. J Roy Stat Soc A Sta 166: 5–21.
Štítky
Interné lekárstvoČlánok vyšiel v časopise
PLOS Medicine
2013 Číslo 3
- Statinová intolerance
- Parazitičtí červi v terapii Crohnovy choroby a dalších zánětlivých autoimunitních onemocnění
- Pleiotropní účinky statinů na kardiovaskulární systém
- Vztah mezi statiny a rizikem vzniku nádorových onemocnění − metaanalýza
- Statiny indukovaná myopatie: Jak na diferenciální diagnostiku?
Najčítanejšie v tomto čísle
- Surveillance Programme of IN-patients and Epidemiology (SPINE): Implementation of an Electronic Data Collection Tool within a Large Hospital in Malawi
- Adjunctive Atypical Antipsychotic Treatment for Major Depressive Disorder: A Meta-Analysis of Depression, Quality of Life, and Safety Outcomes
- Strengthening the Expanded Programme on Immunization in Africa: Looking beyond 2015
- The Cost and Impact of Scaling Up Pre-exposure Prophylaxis for HIV Prevention: A Systematic Review of Cost-Effectiveness Modelling Studies